Basic init idear template

This commit is contained in:
2025-06-18 14:23:18 +02:00
commit f9b9e1226b
10 changed files with 313 additions and 0 deletions

16
.dockerignore Normal file
View File

@ -0,0 +1,16 @@
data/
figures/
notebooks/
scripts/
envs/
logs/
*.pyc
__pycache__/
*.h5
.Trash-0/
.ipynb_checkpoints/
env_setup.sh
docker-compose.yaml
run_container.sh
TODO.md
.env

8
.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
envs/
logs/
*.pyc
__pycache__/
*.h5
.env
.ipynb_checkpoints
.Trash-0

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "dima"]
path = dima
url = https://gitea.psi.ch/5505-public/dima.git

131
README.md Normal file
View File

@ -0,0 +1,131 @@
# IDEAR FAIRification Toolkit
This is a **containerized, JupyterLab-based data toolkit** developed as part of the IDEAR project. It supports efficient, reproducible, and metadata-enriched data processing workflows for instrument-generated datasets.
---
### Key Features
- Modular pipeline with reusable notebook workflows
- Metadata-driven HDF5 outputs for long-term data reuse
- Optional network-mounted input for seamless integration with shared drives
---
### Output Format
- **Self-describing HDF5 files**, including:
- Project-level, contextual, and data lineage metadata
---
### Extensibility
New instruments can be supported by extending the file parsing capabilities in the `dima/` module.
## Repository Structure
<details>
<summary><b>Click to expand</b></summary>
- `data/` — Input and output datasets (mounted volume)
- `figures/` — Output visualizations (mounted volume)
- `notebooks/` — Jupyter notebooks for processing and metadata integration
- `scripts/` — Supplementary processing logic
- `dima/` — Metadata and HDF5 schema utilities (persisted module)
- `Dockerfile` — Container image definition
- `docker-compose.yaml` — Local and networked deployment options
- `env_setup.sh` — Optional local environment bootstrap
- `CITATION.cff`, `LICENCE`, `README.md`, `.gitignore`, `.dockerignore` — Project metadata and config
- `campaignDescriptor.yaml` — Campaign-specific metadata
</details>
---
## Getting Started
### Requirements
#### For Docker-based usage:
- **Docker Desktop**
- **Git Bash** (for running shell scripts on Windows)
#### Optional for local (non-Docker) usage:
- **Conda** (`miniconda` or `anaconda`)
#### If accessing network drives (e.g., PSI):
- PSI credentials with access to mounted network shares
---
## Clone the Repository
```bash
git clone --recurse-submodules <your-repo-url>
cd <your-repo-name>
```
## Run with Docker
This toolkit includes a containerized JupyterLab environment for executing the data processing pipeline, plus an optional dashboard for manual flagging.
1. Open **PowerShell as Administrator** and navigate to the `acsmnode` repository.
2. Create a `.env` file in the root of `acsmnode/`.
3. **Securely store your network drive access credentials** in the `.env` file by adding the following lines:
```plaintext
CIFS_USER=<your-username>
CIFS_PASS=<your-password>
JUPYTER_TOKEN=my-token
```
**To protect your credentials:**
- Do not share the .env file with others.
- Ensure the file is excluded from version control by adding .env to your .gitignore and .dockerignore files.
4. Open **Docker Desktop**, then build the container image:
```bash
docker build -f Dockerfile -t idear_processor .
```
5. Start the environment:
- **Locally without network drive mount:**
```bash
docker compose up idear_processor
- **With network drive mount:**
```bash
docker compose up idear_processor_networked
6. Access:
- **Jupyter Lab**: [http://localhost:8889/lab/tree/notebooks/](http://localhost:8889/lab/tree/notebooks/)
7. Stop the app:
In the previously open PowerShell terminal, enter:
```bash
Ctrl + C
```
After the container is properly Stopped, remove the container process as:
```bash
docker rm $(docker ps -aq --filter ancestor=idear_processor)
```
## (Optional) Set Up the Python Environment
> Required only if you plan to run the toolkit outside of Docker
If **Git Bash** lacks a suitable Python interpreter, run:
```bash
bash env_setup.sh
```
## Citation
## License

0
data/.gitkeep Normal file
View File

1
dima Submodule

Submodule dima added at d5fa2b6c71

0
figures/.gitkeep Normal file
View File

View File

@ -0,0 +1,154 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data integration workflow of experimental campaign\n",
"\n",
"In this notebook, we will go through a our data integration workflow. This involves the following steps:\n",
"\n",
"1. Specify data integration file through YAML configuration file.\n",
"2. Create an integrated HDF5 file of experimental campaign from configuration file.\n",
"3. Display the created HDF5 file using a treemap\n",
"\n",
"## Import libraries and modules\n",
"\n",
"* Excecute (or Run) the Cell below"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"# Set up project root directory\n",
"\n",
"notebook_dir = os.getcwd() # Current working directory (assumes running from notebooks/)\n",
"project_path = os.path.normpath(os.path.join(notebook_dir, \"..\")) # Move up to project root\n",
"dima_path = os.path.normpath(os.path.join(project_path, \"dima\")) # Move up to project root\n",
"\n",
"for item in sys.path:\n",
" print(item)\n",
"\n",
"\n",
"if project_path not in sys.path: # Avoid duplicate entries\n",
" sys.path.append(project_path)\n",
" print(project_path)\n",
"if dima_path not in sys.path:\n",
" sys.path.insert(0,dima_path)\n",
" print(dima_path)\n",
"\n",
"import dima.visualization.hdf5_vis as hdf5_vis\n",
"import dima.pipelines.data_integration as data_integration\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1: Specify data integration task through YAML configuration file\n",
"\n",
"* Open the `campaignDescriptor.yaml` file located in the root directory.\n",
"\n",
"* Refer to examples in `/dima/input_files/` for guidance.\n",
"\n",
"* Specify the input and output directory paths.\n",
"\n",
"* Execute the cell to initiate the configuration.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"yaml_config_file_path ='../campaignDescriptor.yaml'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2: Create an integrated HDF5 file of experimental campaign.\n",
"\n",
"* Excecute Cell. Here we run the function `integrate_data_sources` with input argument as the previously specified YAML config file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"hdf5_file_path = data_integration.run_pipeline(yaml_config_file_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hdf5_file_path"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Display integrated HDF5 file using a treemap\n",
"\n",
"* Excecute Cell. A visual representation in html format of the integrated file should be displayed and stored in the output directory folder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if isinstance(hdf5_file_path ,list):\n",
" for path_item in hdf5_file_path :\n",
" hdf5_vis.display_group_hierarchy_on_a_treemap(path_item)\n",
"else:\n",
" hdf5_vis.display_group_hierarchy_on_a_treemap(hdf5_file_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "dash_multi_chem_env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

0
requirements.txt Normal file
View File

0
scripts/.gitkeep Normal file
View File