Files
dima/src/hdf5_lib.py

605 lines
24 KiB
Python

import sys
import os
root_dir = os.path.abspath(os.curdir)
sys.path.append(root_dir)
import pandas as pd
import numpy as np
#import g5505_file_reader
import src.g5505_utils as utils
#import input_files.config_file as config_file
import src.hdf5_vis as hdf5_vis
import src.g5505_file_reader as g5505f_reader
import h5py
import yaml
import shutil
import logging
# Define mapping from extension to their file reader
ext_to_reader_dict = {'.ibw': g5505f_reader.read_xps_ibw_file_as_dict,
'.txt': lambda a1: g5505f_reader.read_txt_files_as_dict(a1,False),
'.TXT': lambda a1: g5505f_reader.read_txt_files_as_dict(a1,False),
'.dat': lambda a1: g5505f_reader.read_txt_files_as_dict(a1,False),
'.h5': lambda a1,a2,a3: g5505f_reader.copy_file_in_group(a1,a2,a3,False)}
def read_mtable_as_dataframe(filename):
""" Reconstruct a Matlab Table encoded in a .h5 file as a Pandas DataFrame. The input .h5 file
contains as many groups as rows in the Matlab Table, and each group stores dataset-like variables in the Table as
Datasets while categorical and numerical variables in the table are represented as attributes of each group.
Note: DataFrame is constructed columnwise to ensure homogenous data columns.
Parameters:
filename (str): .h5 file's name. It may include location-path information.
Returns:
output_dataframe (pd.DataFrame): Matlab's Table as a Pandas DataFrame
"""
#contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
with h5py.File(filename,'r') as file:
# Define group's attributes and datasets. This should hold
# for all groups. TODO: implement verification and noncompliance error if needed.
group_list = list(file.keys())
group_attrs = list(file[group_list[0]].attrs.keys())
#
column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
group_datasets = list(file[group_list[0]].keys()) if not 'DS_EMPTY' in file[group_list[0]].keys() else []
#
column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
# Define data_frame as group_attrs + group_datasets
#pd_series_index = group_attrs + group_datasets
pd_series_index = column_attr_names + column_dataset_names
output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
tmp_col = []
for meas_prop in group_attrs + group_datasets:
if meas_prop in group_attrs:
column_label = meas_prop[meas_prop.find('_')+1:]
# Create numerical or categorical column from group's attributes
tmp_col = [file[group_key].attrs[meas_prop][()][0] for group_key in group_list]
else:
# Create dataset column from group's datasets
column_label = file[group_list[0] + '/' + meas_prop].attrs['column_name']
#tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
tmp_col = [file[group_key + '/' + meas_prop][()] for group_key in group_list]
output_dataframe.loc[:,column_label] = tmp_col
return output_dataframe
def create_group_hierarchy(obj, df, columns):
"""
Input:
obj (h5py.File or h5py.Group)
columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
"""
if not columns:
return
# Determine categories associated with first categorical column
unique_values = df[columns[0]].unique()
if obj.name == '/':
obj.attrs.create('count',df.shape[0])
obj.attrs.create('file_list',df['filename'].tolist())
for group_name in unique_values:
group = obj.require_group(group_name)
group.attrs.create('column_name', columns[0])
sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
group.attrs.create('count',sub_df.shape[0])
group.attrs.create('file_list',sub_df['filename'].tolist())
# if group_name == 'MgO powder,H2O,HCl':
# print('Here:',sub_df.shape)
create_group_hierarchy(group, sub_df, columns[1::])
def is_nested_hierarchy(df) -> bool:
"""receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
"""
# TODO: generalize the code to check for deeper group hierachies.
def are_nested(df, col, col_nxt):
""" Checks whether low level LL groups can be separated in terms of high level HL groups.
That is, elements of low-level groups do not belong to more than one HL group."""
# Compute higher level group names/categories
memberships = df[col_nxt].unique().tolist()
# Compute upper-level group memberships of low-level groups
col_avg_memberships = df.groupby(col).mean()[col_nxt].unique()
# Check whether all low-level groups have an actual hlg membership. That is, their avg. hlg membership is in the hlg membership.
return all([col_avg_memberships[group_idx] in memberships for group_idx in range(len(col_avg_memberships))])
df_tmp = df.copy()
# Create relabeling map
for column_name in df_tmp.columns:
category_index = pd.Series(np.arange(len(df_tmp[column_name].unique())), index=df_tmp[column_name].unique())
df_tmp[column_name] = category_index[df_tmp[column_name].tolist()].tolist()
df_tmp.plot()
return all([are_nested(df_tmp,'level_'+str(i)+'_groups','level_'+str(i+1)+'_groups') for i in range(len(df_tmp.columns)-1)])
def get_parent_child_relationships(file: h5py.File):
nodes = ['/']
parent = ['']
#values = [file.attrs['count']]
# TODO: maybe we should make this more general and not dependent on file_list attribute?
#if 'file_list' in file.attrs.keys():
# values = [len(file.attrs['file_list'])]
#else:
# values = [1]
values = [len(file.keys())]
def node_visitor(name,obj):
if name.count('/') <=2:
nodes.append(obj.name)
parent.append(obj.parent.name)
#nodes.append(os.path.split(obj.name)[1])
#parent.append(os.path.split(obj.parent.name)[1])
if isinstance(obj,h5py.Dataset):# or not 'file_list' in obj.attrs.keys():
values.append(1)
else:
print(obj.name)
try:
values.append(len(obj.keys()))
except:
values.append(0)
file.visititems(node_visitor)
return nodes, parent, values
def get_groups_at_a_level(file: h5py.File, level: str):
groups = []
def node_selector(name, obj):
if name.count('/') == level:
print(name)
groups.append(obj.name)
file.visititems(node_selector)
#file.visititems()
return groups
def annotate_root_dir(filename,annotation_dict: dict):
with h5py.File(filename,'r+') as file:
file.attrs.update(annotation_dict)
#for key in annotation_dict:
# file.attrs.create('metadata_'+key, annotation_dict[key])
def is_valid_directory_path(dirpath,select_dir_keywords):
activated_keywords = []
if select_dir_keywords:
for item in select_dir_keywords:
if len(item.split(os.sep))>1:
is_sublist = all([x in dirpath.split(os.sep) for x in item.split(os.sep)])
activated_keywords.append(is_sublist)
else:
activated_keywords.append(item in dirpath)
else:
activated_keywords.append(True)
return any(activated_keywords)
def transfer_file_dict_to_hdf5(h5file, group_name, file_dict):
"""
Transfers data from a file_dict to an HDF5 file.
Parameters:
h5file (h5py.File): HDF5 file object where the data will be written.
group_name (str): Name of the HDF5 group where data will be stored.
file_dict (dict): Dictionary containing file data to be transferred.
Required structure:
{
'name': str,
'attributes_dict': dict,
'datasets': [
{
'name': str,
'data': array-like,
'shape': tuple,
'attributes': dict (optional)
},
...
]
}
"""
if not file_dict:
return
try:
# Create group and add their attributes
group = h5file[group_name].create_group(name=file_dict['name'])
# Add group attributes
group.attrs.update(file_dict['attributes_dict'])
# Add datasets to the just created group
for dataset in file_dict['datasets']:
dataset_obj = group.create_dataset(
name=dataset['name'],
data=dataset['data'],
shape=dataset['shape']
)
# Add dataset's attributes
attributes = dataset.get('attributes', {})
dataset_obj.attrs.update(attributes)
except Exception as inst:
print(inst)
logging.error('Failed to transfer data into HDF5: %s', inst)
def create_hdf5_file_from_filesystem_path(output_filename : str,
input_file_system_path : str,
select_dir_keywords = [],
select_file_keywords =[],
top_sub_dir_mask : bool = True,
root_metadata_dict : dict = {}):
"""
Creates an .h5 file with name "output_filename" that preserves the directory tree (or folder structure)
of a given filesystem path.
The data integration capabilities are limited by our file reader, which can only access data from a list of
admissible file formats. These, however, can be extended. Directories are groups in the resulting HDF5 file.
Files are formatted as composite objects consisting of a group, file, and attributes.
Parameters:
output_filename (str): Name of the output HDF5 file.
input_file_system_path (str): Path to root directory, specified with forward slashes, e.g., path/to/root.
select_dir_keywords (list): List of string elements to consider or select only directory paths that contain
a word in 'select_dir_keywords'. When empty, all directory paths are considered
to be included in the HDF5 file group hierarchy.
select_file_keywords (list): List of string elements to consider or select only files that contain a word in
'select_file_keywords'. When empty, all files are considered to be stored in the HDF5 file.
top_sub_dir_mask (bool): Mask for top-level subdirectories.
root_metadata_dict (dict): Metadata to include at the root level of the HDF5 file.
Returns:
str: Path to the created HDF5 file.
"""
allowed_file_extensions = list(ext_to_reader_dict.keys()) # list(config_file.select_file_readers(group_id).keys())
if '/' in input_file_system_path:
input_file_system_path = input_file_system_path.replace('/',os.sep)
else:
raise ValueError('input_file_system_path needs to be specified using forward slashes "/".' )
for i, keyword in enumerate(select_dir_keywords):
select_dir_keywords[i] = keyword.replace('/',os.sep)
# Copy input_directory into the output_dir_path, and work with it from now on
output_dir_path = os.path.splitext(output_filename)[0].replace('/',os.sep)
path_to_filenames_dict = utils.copy_directory_with_contraints(input_file_system_path,
output_dir_path,
select_dir_keywords,
select_file_keywords,
allowed_file_extensions)
# Set input_directory as copied input directory
root_dir = output_dir_path
with h5py.File(output_filename, 'w') as h5file:
number_of_dirs = len(path_to_filenames_dict.keys())
dir_number = 1
for dirpath, filtered_filenames_list in path_to_filenames_dict.items():
start_message = f'Starting to transfer files in directory: {dirpath}'
end_message = f'\nCompleted transferring files in directory: {dirpath}'
# Print and log the start message
print(start_message)
logging.info(start_message)
# Check if dirpath is valid. TODO: This is perhaps redundant by design of path_to_filenames_dict.
if not is_valid_directory_path(dirpath,select_dir_keywords):
continue
# Check if filtered_filenames_list is nonempty. TODO: This is perhaps redundant by design of path_to_filenames_dict.
if not filtered_filenames_list:
continue
group_name = dirpath.replace(os.sep,'/')
group_name = group_name.replace(root_dir.replace(os.sep,'/') + '/', '/')
# Flatten group name to one level
offset = sum([len(i.split(os.sep)) if i in dirpath else 0 for i in select_dir_keywords])
tmp_list = group_name.split('/')
if len(tmp_list) > offset+1:
group_name = '/'.join([tmp_list[i] for i in range(offset+1)])
# Group hierarchy is implicitly defined by the forward slashes
if not group_name in h5file.keys():
h5file.create_group(group_name)
#h5file[group_name].attrs.create(name='filtered_file_list',data=convert_string_to_bytes(filtered_filename_list))
#h5file[group_name].attrs.create(name='file_list',data=convert_string_to_bytes(filenames_list))
else:
print(group_name,' was already created.')
for filenumber, filename in enumerate(filtered_filenames_list):
file_ext = os.path.splitext(filename)[1]
#try:
if not 'h5' in filename:
#file_dict = config_file.select_file_readers(group_id)[file_ext](os.path.join(dirpath,filename))
file_dict = ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
transfer_file_dict_to_hdf5(h5file, group_name, file_dict)
else:
source_file_path = os.path.join(dirpath,filename)
dest_file_obj = h5file
dest_group_name = f'{group_name}/{filename}' #group_name +'/'+filename
ext_to_reader_dict[file_ext](source_file_path, dest_file_obj, dest_group_name)
# Update the progress bar and log the end message
utils.progressBar(dir_number, number_of_dirs, end_message)
logging.info(end_message)
dir_number = dir_number + 1
if len(root_metadata_dict.keys())>0:
annotate_root_dir(output_filename,root_metadata_dict)
#output_yml_filename_path = hdf5_vis.take_yml_snapshot_of_hdf5_file(output_filename)
return output_filename #, output_yml_filename_path
import os
#import src.hdf5_lib as h5lib
import src.g5505_utils as utils
import h5py
import src.metadata_review_lib as metadata_lib
def save_processed_dataframe_to_hdf5(df, annotator, output_filename): # src_hdf5_path, script_date, script_name):
"""
Save processed dataframe columns with annotations to an HDF5 file.
Parameters:
df (pd.DataFrame): DataFrame containing processed time series.
annotator (): Annotator object with get_metadata method.
output_filename (str): Path to the source HDF5 file.
"""
# Convert datetime columns to string
datetime_cols = df.select_dtypes(include=['datetime64']).columns
if list(datetime_cols):
df[datetime_cols] = df[datetime_cols].map(str)
# Convert dataframe to structured array
icad_data_table = utils.dataframe_to_np_structured_array(df)
# Get metadata
metadata_dict = annotator.get_metadata()
# Prepare project level attributes to be added at the root level
project_level_attributes = metadata_dict['metadata']['project']
# Prepare high-level attributes
high_level_attributes = {
'parent_files': metadata_dict['parent_files'],
**metadata_dict['metadata']['sample'],
**metadata_dict['metadata']['environment'],
**metadata_dict['metadata']['instruments']
}
# Prepare data level attributes
data_level_attributes = metadata_dict['metadata']['datasets']
for key, value in data_level_attributes.items():
if isinstance(value,dict):
data_level_attributes[key] = utils.parse_attribute(value)
# Prepare file dictionary
file_dict = {
'name': project_level_attributes['processing_file'],
'attributes_dict': high_level_attributes,
'datasets': [{
'name': "data_table",
'data': icad_data_table,
'shape': icad_data_table.shape,
'attributes': data_level_attributes
}]
}
# Check if the file exists
if os.path.exists(output_filename):
mode = "a"
print(f"File {output_filename} exists. Opening in append mode.")
else:
mode = "w"
print(f"File {output_filename} does not exist. Creating a new file.")
# Write to HDF5
with h5py.File(output_filename, mode) as h5file:
# Add project level attributes at the root/top level
h5file.attrs.update(project_level_attributes)
transfer_file_dict_to_hdf5(h5file, '/', file_dict)
def create_hdf5_file_from_dataframe(ofilename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
""" Creates an hdf5 file with as many levels as indicated by len(group_by_funcs).
Top level denotes the root group/directory and bottom level denotes measurement level groups.
Parameters:
input_data (pd.DataFrame) :
group_by_funcs (list of callables or strs) : contains a list of callables or dataframe's column names that will be used
to partition or group files from top to bottom.
Callables in the list must assign a categorical value to each file in a file list, internally represented as a DataFrame,
and they thus return a pd.Series of categorical values.
On the other hand, strings in the list refer to the name of categorical columns in the input_data (when this is a DataFrame)
Returns:
"""
# Check whether input_data is a valid file-system path or a DataFrame
is_valid_path = lambda x : os.path.exists(input_data) if isinstance(input_data,str) else False
if is_valid_path(input_data):
file_list = os.listdir(input_data)
# Navigates file-system folders/directories from top to bottom.
#for dirpath, dirnames, filenames in os.walk(input_data,topdown=True):
#df = pd.DataFrame(file_list,columns=['filename'])
df = utils.augment_with_filetype(df)
elif isinstance(input_data,pd.DataFrame):
df = input_data.copy()
else:
raise ValueError("input_data must be either a valid file-system path or a dataframe.")
# Create group columns to form paths
if utils.is_callable_list(group_by_funcs):
grouping_cols = []
for i, func in enumerate(group_by_funcs):
grouping_cols.append('level_'+str(i)+'_groups')
df['level_'+str(i)+'_groups'] = func(df)
elif utils.is_str_list(group_by_funcs) and all([item in df.columns for item in group_by_funcs]):
grouping_cols = group_by_funcs
else:
raise ValueError("'group_by_funcs' must be a list of callables (or str) that takes input_data as input an returns a valid categorical output.")
# Concatenate group columns to form paths
df['group_path'] = df[grouping_cols].apply(lambda row: '/'.join(row.values.astype(str)), axis=1)
if approach == 'botton-up':
# TODO: implement botton-up approach
if is_nested_hierarchy(df.loc[:,grouping_cols]):
print('Do something')
else:
raise ValueError("group_by_funcs do not define a valid group hierarchy. Please reprocess the input_data or choose different grouping functions.")
elif approach == 'top-down':
# Check the length of group_by_funcs list is at most 2
#if len(group_by_funcs) > 2:
# # TODO: extend to more than 2 callable elements.
# raise ValueError("group_by_funcs can only contain at most two grouping elements.")
with h5py.File(ofilename, 'w') as file:
# Create groups based on concatenated paths
for path in df['group_path'].unique():
file.create_group(path)
# TODO: incorporate remaining cols (i.e., excluding the group columns) as either metadata or datasets
#create_group_hierarchy(file, df, grouping_cols)
file.attrs.create(name='depth', data=len(grouping_cols)-1)
print(':)')
else:
raise ValueError("'approach' must take values in ['top-down','bottom-up']")
#for i, value in enumerate(df['level_'+str(0)+'_groups'].unique().tolist()):
# 2. Validate group hierarchy, lower level groups must be embedded in higher level groups
# 3. Create hdf5 file with groups defined by the 'file_group' column
#
# Add datasets to groups and the groups and the group's attributes
#return 0
def main_mtable_h5_from_dataframe():
#import os
ROOT_DIR = os.path.abspath(os.curdir)
# Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table
input_data_df = read_mtable_as_dataframe(os.path.join(ROOT_DIR,'input_files\\BeamTimeMetaData.h5'))
# Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file
# under certain grouping specificiations.
input_data_df = input_data_df.rename(columns = {'name':'filename'})
input_data_df = utils.augment_with_filenumber(input_data_df)
input_data_df = utils.augment_with_filetype(input_data_df)
input_data_df = utils.split_sample_col_into_sample_and_data_quality_cols(input_data_df)
input_data_df['lastModifiedDatestr'] = input_data_df['lastModifiedDatestr'].astype('datetime64[s]')
# Define grouping functions to be passed into create_hdf5_file function. These can also be set
# as strings refering to categorical columns in input_data_df.
test_grouping_funcs = True
if test_grouping_funcs:
group_by_sample = lambda x : utils.group_by_df_column(x,'sample')
group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
#group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')
else:
group_by_sample = 'sample'
group_by_type = 'filetype'
group_by_filenumber = 'filenumber'
output_filename_path = os.path.join('output_files','thorsten_file_list.h5')
create_hdf5_file_from_dataframe(output_filename_path,input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type])
#create_hdf5_file_from_dataframe('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
annotation_dict = {'1-Campaign name': '**SLS-Campaign-2023**',
'2-Users':'Thorsten, Luca, Zoe',
'3-Startdate': str(input_data_df['lastModifiedDatestr'].min()),
'4-Enddate': str(input_data_df['lastModifiedDatestr'].max())
}
annotate_root_dir(output_filename_path, annotation_dict)
#display_group_hierarchy_on_a_treemap(output_filename_path)
print(':)')
if __name__ == '__main__':
#main()
main_mtable_h5_from_dataframe()
#main_5505()
print(':)')