{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "from nbutils import add_project_path_to_sys_path\n", "\n", "\n", "# Add project root to sys.path\n", "add_project_path_to_sys_path()\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "try:\n", " import src.hdf5_writer as hdf5_writer\n", " import src.hdf5_ops as hdf5_ops\n", " import visualization.hdf5_vis as h5vis\n", " import visualization.napp_plotlib as napp\n", "\n", " import utils.g5505_utils as utils\n", " #import pipelines.metadata_revision as metadata_revision\n", " print(\"Imports successful!\")\n", "except ImportError as e:\n", " print(f\"Import error: {e}\")\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Read the above specified input_file_path as a dataframe. \n", "\n", "Since we know this file was created from a Thorsten Table's format, we can use h5lib.read_mtable_as_dataframe() to read it.\n", "\n", "Then, we rename the 'name' column as 'filename', as this is the column's name use to idenfify files in subsequent functions.\n", "Also, we augment the dataframe with a few categorical columns to be used as grouping variables when creating the hdf5 file's group hierarchy. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define input file directory\n", "\n", "input_file_path = '../input_files/BeamTimeMetaData.h5'\n", "output_dir_path = '../output_files'\n", "if not os.path.exists(output_dir_path):\n", " os.makedirs(output_dir_path)\n", "\n", "# Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table\n", "input_data_df = hdf5_ops.read_mtable_as_dataframe(input_file_path)\n", "\n", "# Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file\n", "# under certain grouping specificiations.\n", "input_data_df = input_data_df.rename(columns = {'name':'filename'})\n", "input_data_df = utils.augment_with_filenumber(input_data_df)\n", "input_data_df = utils.augment_with_filetype(input_data_df)\n", "input_data_df = utils.split_sample_col_into_sample_and_data_quality_cols(input_data_df)\n", "input_data_df['lastModifiedDatestr'] = input_data_df['lastModifiedDatestr'].astype('datetime64[s]')\n", "\n", "input_data_df.columns\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now create a hdf5 file with a 3-level group hierarchy based on the input_data and three grouping functions. Then\n", "we visualize the group hierarchy of the created file as a treemap." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define grouping functions to be passed into create_hdf5_file function. These can also be set\n", "# as strings refering to categorical columns in input_data_df.\n", "\n", "test_grouping_funcs = True\n", "if test_grouping_funcs:\n", " group_by_sample = lambda x : utils.group_by_df_column(x,'sample')\n", " group_by_type = lambda x : utils.group_by_df_column(x,'filetype')\n", " group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')\n", "else:\n", " group_by_sample = 'sample'\n", " group_by_type = 'filetype'\n", " group_by_filenumber = 'filenumber'\n", "\n", "import pandas as pd\n", "import h5py\n", "\n", "path_to_output_filename = os.path.normpath(os.path.join(output_dir_path, 'test.h5'))\n", "\n", "grouping_by_vars = ['sample', 'filenumber']\n", "\n", "path_to_output_filename = hdf5_writer.create_hdf5_file_from_dataframe(path_to_output_filename, \n", " input_data_df, \n", " grouping_by_vars\n", " )\n", "\n", "annotation_dict = {'Campaign name': 'SLS-Campaign-2023',\n", " 'Producers':'Thorsten, Luca, Zoe',\n", " 'Startdate': str(input_data_df['lastModifiedDatestr'].min()),\n", " 'Enddate': str(input_data_df['lastModifiedDatestr'].max())\n", " }\n", "\n", "dataOpsObj = hdf5_ops.HDF5DataOpsManager(path_to_output_filename)\n", "dataOpsObj.load_file_obj()\n", "# Annotate root folder with annotation_dict\n", "dataOpsObj.append_metadata('/',annotation_dict)\n", "dataOpsObj.unload_file_obj()\n", "\n", "\n", "\n", "h5vis.display_group_hierarchy_on_a_treemap(path_to_output_filename)\n" ] } ], "metadata": { "kernelspec": { "display_name": "multiphase_chemistry_env", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }