298 Commits

Author SHA1 Message Date
edabcb57f8 Update instruments/readers/nasa_ames_reader.py to handle dirty text entries. Dirty entries of time variables that cannot be properly processed are sent to nat 2025-05-27 10:12:20 +02:00
76f8b194c4 Restore instruments/readers/nasa_ames_reader.py to previous version. 2025-05-26 19:39:21 +02:00
d0c27d4414 Record missing values for each variable according to EBAS value convention 2025-05-21 13:53:18 +02:00
8b30fe5815 Split header in three parts and detect variables and variable descriptions added to attribute dictionary 2025-05-21 09:19:16 +02:00
974260f177 Register new file reader in the reader registry system. 2025-05-14 13:51:28 +02:00
ea1011a9ea Added new filereader dictionary pair for nasames files. This is a first version that may change. 2025-05-14 13:50:08 +02:00
d59967fcc4 Fix import statement in pipelines.data_integration.py 2025-03-14 10:12:57 +01:00
40f17818f2 WIP: Update contributing and acknowledgement sections. 2025-03-11 14:03:22 +01:00
6b43c95a8d Implemented hdf5_file_reader.py and updated register.yaml and hdf5_writer.py. This replaces previous function __copy_file_in_group(). 2025-02-25 12:25:15 +01:00
109be49f31 Merge branch 'feature/DB_for_FileReader_Repo' into 'main'
Restructuring of file reader system to process multi-instrument data folders.

See merge request 5505-public/dima!3
2025-02-25 10:48:59 +01:00
14b738818c Merge branch 'main' into 'feature/DB_for_FileReader_Repo'
# Conflicts:
#   instruments/filereader_registry.py
#   pipelines/data_integration.py
#   src/hdf5_writer.py
2025-02-25 10:41:02 +01:00
4f438f86fe Update import statements in pipelines/data_integration.py. from instruments.readers import ... -> from instruments import ... 2025-02-25 09:21:52 +01:00
68344964ac Implemented create_hdf5_from_filesystem_new() using new instrument readers cml interface and subprocesses. This facilitates extension of file reading capabilities by collaborators without requiring changes to file_registry.py. Only additions in folders and registry.yaml. 2025-02-24 18:48:03 +01:00
e5fdc6fa31 Update all file readers with command line interface so we can run them as a subprocess. Added also registry.yaml to decouple code from user-based instrument adaptations or extensions. 2025-02-24 17:27:12 +01:00
2cdd6925af Merge branch 'main' of https://gitlab.psi.ch/5505-public/dima 2025-02-22 18:02:45 +01:00
bc1d65d469 Fix import for filereader_registry.py after moving it from intruments/readers/ one level above. 2025-02-22 17:59:00 +01:00
85d4e39299 Moved filereader_registry.py outside readers folder. 2025-02-22 17:53:19 +01:00
02e926e003 Moved filereader_registry.py outside readers folder. 2025-02-22 17:51:56 +01:00
81be6b54c8 Change import statements with try except to enable explicit import of submodules from import to avoid conflicts with parent project. 2025-02-22 17:10:53 +01:00
df0aca97df Implement data_lineage_metadata.json detection and then use it to annotate associated file. 2025-02-10 15:56:34 +01:00
b8900cab67 Enable boolean type columns from pandas DataFrame to be suitably converted into numpy structured array 2025-02-10 15:52:17 +01:00
7906387271 Make file reader selection case insensitive by using ext.lower() and update config_text_reader.py to point to renamed dictionary. 2025-02-08 19:45:16 +01:00
cbf468f5ac remove instruments/dictionaries/ICAD_NO2.yaml. Its dict terms are now in ICAD.yaml. 2025-02-08 19:23:37 +01:00
131704dcf2 Add dict terms from ICAD_NO2.yaml 2025-02-08 19:22:27 +01:00
33aabf45fa Combine dictionaries of ICAD_HONO.yaml and ICAD_NO2.yaml into ICAD.yaml 2025-02-08 19:21:17 +01:00
3e6f6bc46e Remove skip directory condition when directory keywords are empty. Here, all paths to files should be considered. 2025-02-07 16:37:01 +01:00
1a843ee2c6 Fix reader txt/csv default behavior. 2025-02-07 16:25:45 +01:00
46ca26a983 Enable instrumentFolder of form <instFolder>/<category>/ to be trasfered without flatenning 2025-02-07 16:24:21 +01:00
36780d1a63 Add try except block to trigger errors for invalid group names. 2025-02-06 16:07:45 +01:00
5943c60216 Add constraint to match only path/to/keyword1/keyword2/files containing a composite keyword keyword1/keyword2. 2025-02-06 15:34:38 +01:00
58386ca10b Add property to extracted dataset as dataframe. Now time column is of datetime type to facilitate downstream procesing. 2025-02-04 17:23:32 +01:00
d89aebd861 Implement method in hdf5 manager to infer datetime column in dataset 2025-02-04 17:13:01 +01:00
e358d4ab64 Synch with remote repo 2025-02-03 10:31:48 +01:00
5e3f75d66b Fix typo in html text. 2025-01-27 13:53:59 +01:00
a3a1b8506c Update readme.md and set_up_env.sh 2025-01-27 13:29:29 +01:00
1b2184d8e1 Update unload operation to remove reference and fix logic error to dataset metadata extraction. 2025-01-24 10:28:43 +01:00
7ffcd90e7b Add validation step to yaml file validation to ensure list type and a minimun length for the 'instrument_datafolder' keyword. 2025-01-22 15:55:21 +01:00
d59e9d2c0b Fix typo on extension items, extensions need to include a dot .json and .yaml. 2025-01-21 09:30:49 +01:00
f07dfc0a81 Add json and yaml extensions to admissible file extension lists. 2025-01-21 08:57:38 +01:00
de9c45c21f Updated to cleared jupyter notebooks 2025-01-14 14:46:43 +01:00
ba49b168c4 Added comments to explain configuration parameters/or variables. 2025-01-14 14:25:53 +01:00
df4bd2b3ae Add directory tree structure description. 2024-12-04 17:20:35 +01:00
368e4ce6d8 Update .gitignore with output_files/ 2024-12-04 16:53:57 +01:00
4d87169732 Add .gitkeep and keep this folder empty. it is only to be used for local processing 2024-12-04 16:52:50 +01:00
32c1bd0731 Update readme with getting started section 2024-12-04 16:24:14 +01:00
b13b4a4b57 Solved binary incompatibility issue of generated environment by conda installing h5py and numpy from conda-forge or default channels. 2024-12-04 16:15:42 +01:00
5fa28ca917 Updated bash script and yml env file to set up python interpreter. 2024-12-04 13:52:35 +01:00
d787ce6972 Update to readme.md 2024-12-03 13:55:45 +01:00
941bf0e784 Update readme with key features of the repo. 2024-12-03 13:50:53 +01:00
68cf2f8d3e Updated README.md with software arquitecture figure 2024-12-02 17:28:22 +01:00
99cc6faf11 Updated README.md with software arquitecture figure 2024-12-02 17:24:48 +01:00
39eec2679e Updated README 2024-12-02 17:22:52 +01:00
6319c36cfb Updated figure name. 2024-12-02 17:08:36 +01:00
c97ff1208e Updated ci runner pipeline fot gitlab page 2024-12-02 16:31:49 +01:00
6899894ba1 Updated documentation and built doc website 2024-12-02 16:31:03 +01:00
fc139e0ae5 Relocated to visualization module 2024-12-02 15:39:41 +01:00
ef8cf9bb4e Add __init__.py 2024-12-02 15:36:03 +01:00
d79877cc9b Moved hdf5_lib.py to visualization folder 2024-12-02 15:34:44 +01:00
fa9edcb115 Removed no longer useful notebook 2024-12-02 15:32:57 +01:00
1bc145530c Added env file specification and bash script for env setup 2024-12-02 15:10:21 +01:00
2eec2155b5 removed review folder. This is now supposed to be create for review of experimental campaign data objects metadata. 2024-12-02 14:32:34 +01:00
b6a41c3378 Configure GitLab Pages 2024-11-26 13:43:09 +01:00
13f070e4c9 Add draft of dima documentation 2024-11-26 13:40:43 +01:00
22e201d063 Removed bacause some of the functionalities have been outsourced to other modules src/hdf5_ops.py and src/hdf5_writer.py 2024-11-26 11:55:06 +01:00
80a7b650af Merge branch 'main' of https://gitlab.psi.ch/5505/dima 2024-11-25 15:50:25 +01:00
f483e8d7fe Updated instrument dictionaries with variable descriptor names aligned with CF metadata conventions. 2024-11-25 15:49:49 +01:00
fed9aa0a1b Update to DIMA package path resolution from file. 2024-11-24 19:45:18 +01:00
85d44d71d6 Attempt to dynamically resolve path to dima package, when excecuted from command line. 2024-11-24 17:37:38 +01:00
6dc89d34fe Commented out metadata info about group members for a given group. This is to simplify yaml or json representation of the metadata. 2024-11-24 15:57:54 +01:00
60f9278f10 Reimplemented code snippet using hdf5_Writer module 2024-11-24 11:32:26 +01:00
3db2eeb041 Moved func create_hdf5_file_from_dataframe() from hdf5_lib_part2 into hdf5_write.py 2024-11-24 11:30:08 +01:00
2740330709 Moved read_mtable_as_dataframe(filename) to src/hdf5_ops.py 2024-11-24 11:03:44 +01:00
ff31c14f92 Removed logs/ folder. This is usually created locally to trace certain file copying, transfer and conversion processes. 2024-11-24 10:51:05 +01:00
01767340f9 Rerun jupyternotebooks to check their functionality after relocating them to notebooks. OpenBis related python scripts still need to be tested. 2024-11-24 10:45:40 +01:00
7708153a62 Add hidden.py to the list. This file may contain sensitive information is only to be accessed locally or from a secure location. 2024-11-24 10:41:32 +01:00
53fae27472 Check whether h5 file being written exists. If so, we do not overwrite it because it may be underdoing refinement, changes or updates, for archiving, sharing, or publishing. 2024-11-24 10:38:13 +01:00
d10786a534 Add utility functions add_project_path_to_sys_path() to set up path to DIMA's modules dynamically. 2024-11-24 10:08:19 +01:00
058b82ff88 Moved demos .py to notebooks. Note: Maybe turn them to jupyternotebooks for consistency 2024-11-24 07:49:50 +01:00
2988d816af Added read_mtable_as_dataframe(filename) back so that jupyter notebook can use it to demonstrate some functionality 2024-11-23 16:31:29 +01:00
ac80b9a3ca Implemented sanitize dataframe function to deal with 'O' which may have numbers or strings detected as string types. Then we use it prior to convert dataframe into structured numpy array. 2024-11-23 16:28:49 +01:00
ca23e363c9 Moved to notebooks/ 2024-11-23 12:29:55 +01:00
feee8762ed Moved to notebooks/ 2024-11-23 12:16:13 +01:00
cc7ad749ca Moved to notebooks/ to improve repo organization 2024-11-23 12:06:27 +01:00
13cb5476b1 Moved data integration ipynb to notebooks folder to improve readability 2024-11-23 11:24:28 +01:00
05f16bf717 Added .pkl extension in the list of admissible file extensions 2024-11-21 11:47:41 +01:00
59e910a0f9 Modified logger setup to create monthly logs 2024-11-21 11:46:11 +01:00
90ae93c124 Added a logs/ and envs/ folder to gitignore. 2024-11-21 11:44:38 +01:00
870d60a789 Improved progress description stdout 2024-11-10 18:21:00 +01:00
c866ce8ee9 Fixed command line interface bug 2024-11-10 18:19:59 +01:00
83b4a12e8b Major code refactoring and simplifications to enhance modularity. Included a command line interface. 2024-11-01 09:52:41 +01:00
2ae8deaf64 Renamed the input argument yaml_review_file as review_yaml_file. 2024-11-01 09:51:12 +01:00
29c6d86583 Included cli commands update and serialize to simplify running metadata revision pipeline. 2024-10-29 07:56:43 +01:00
71b7091fe7 Fixed bug: to_serializable_dtype() did not identify correctly dtype of array's entries with object dtype 2024-10-28 18:49:22 +01:00
e01147d03a Removed unused import statements 2024-10-28 16:37:32 +01:00
c0ec7e9b26 Moved git related operations from pipelines/ to src/git_ops.py 2024-10-28 16:30:34 +01:00
66e236bd5d Added function to validate review yaml file, and updated update_hdf5_with_review function 2024-10-28 16:20:28 +01:00
a8ceffba8b Corrected import statements due to dependency name changes 2024-10-17 16:52:42 +02:00
8129949db9 Renamed module: src/hdf5_lib.py -> src/hdf5_writer.py 2024-10-17 10:53:51 +02:00
d49e7ae9d5 Replaced read_dataset_from_hdf5file(hdf5_file_path, dataset_path) with HDF5DataOpsManager.extract_dataset_as_dataframe(self,dataset_name) 2024-10-17 10:46:19 +02:00
13d65a7383 Fixed bug when file reader not available. File reader registry now returns a reade that maps input to None. 2024-10-14 16:03:03 +02:00
9a76b3a01a Added 'filename_format' attribute to YAML schema. It takes as value a string of comma separated keys from available attributes in YAML file. 2024-10-14 16:01:24 +02:00
5cc409f882 Fixed bug introduce in logger due to invalid date naming replace : with - 2024-10-10 14:29:36 +02:00
51e8e6ae66 Cleaned up import statements and comment out path append operations 2024-10-10 14:27:50 +02:00
5b338c8212 Attempt to initialize dima/utils as a module 2024-10-10 11:53:27 +02:00
507454ee91 Attemp to initialize dima as a module 2024-10-10 11:43:02 +02:00
1e5581769b Robustified metadata and dataset extraction methods by requiring explicit load of file obj before their use. Renamed a few functions and fixed types in print statements. 2024-10-10 11:28:23 +02:00
81e3cc58ca Updated function dependencies to reflect changes made to hdf5_ops.py 2024-10-10 11:02:05 +02:00
800a5aca49 Renamed open_file() --> load_file_obj() and close_file() --> unload_file_obj() to focus more on the management operations on the files that actual file handling operations. 2024-10-10 10:47:44 +02:00
47f095bdc8 Robustifed metadata revision methods with error detection conditions and try-except statements. Metadata revision methods now do not have the capability of opening the file. 2024-10-10 10:39:10 +02:00
cdb0c612ad Changed datetime format output of created_at() function as '%Y-%m-%d %H:%M:%S.%f' 2024-10-09 16:07:40 +02:00
8ea111a0c7 Fixed bug in HDF5DataOpsManager.append_dataset() and added 'creation_date' metadata attribute when instrument (groups) are created. 2024-10-09 16:06:44 +02:00
ecb0425a20 Merge branch 'main' of https://gitlab.psi.ch/5505/dima 2024-10-07 16:19:10 +02:00
2dbd255589 Created file reader for acsm tofware files, updated registry and updated yaml file with instrument specific terms and reader config params. 2024-10-07 16:18:14 +02:00
bd4ced00ba Fixed bug, causing input_path normalization operation to damage Windows network drive paths. Basically, os.path.normpath(path_to_input_directory).strip(os.sep) replaced by os.path.normpath(path_to_input_directory).rstrip(os.sep) 2024-10-07 16:16:12 +02:00
74a78b9534 Updated README.md with guide for intrument dependent file reader extensions and updated TODO.md with pending tasks. 2024-10-03 11:31:51 +02:00
c103268102 Fixed bugs in update_file() method and create_hdf5_file_from_filesystem_path() 2024-10-03 09:32:25 +02:00
2920be624a Added new instrument (flagging app) file reading capabilities. It includes two files a flag_reader.py that takes flag.json files produced by the app into a standard intermidiate representation, and a yaml file with instrument dependent description terms. Last, we modified the filereader_registry.py to find the new instrument file reader. 2024-10-03 09:07:06 +02:00
bac6f5d773 Added __init__.py inside intrument folders 2024-10-02 15:51:02 +02:00
d49f511dbd Added .update_file() method, which enables complementary data structure updates to existing file with same name as append_dir's head. 2024-10-02 14:38:35 +02:00
ea898ca3c5 Added file openning mode as input parameter. Now, mode can only take values in ['w','r+'] 2024-10-02 13:54:59 +02:00
4f0361c6c5 Removed construct_attributes_dict(attrs_obj) and replaced by {key: utils.to_serializable_dtype(val) for key, val in obj.attrs.items()} 2024-10-01 10:42:20 +02:00
1b0c666132 Made two helper functions private by adding the prefix __ 2024-10-01 09:31:41 +02:00
14a1d032b9 Deleted annotate_root_dir(filename,annotation_dict: dict), and outsourced functionality to HDF5DataOpsManager.append_metadata() or .update_metadata() at obj_name = '/' 2024-10-01 09:19:14 +02:00
96500063fb Implemented metadata append, rename, delete, and update operations on the hdf5 manager object and refactored metadata update script based on yaml file to use said operations. 2024-09-30 16:32:39 +02:00
db6fcd03da Refactored a few function calls due to ranming changes in utils module 2024-09-27 08:58:35 +02:00
c992662a1f Renamed to_yaml() as serialize_metadata() and introduce input parameter output_format, which allows yaml or json. 2024-09-26 16:23:09 +02:00
02a7c4d834 Performed a few function relocations and deletions from src/hdf5_lib.py into src/hdf5_ops.py and made a copy of previous version as src/hdf5_lib_part2.py 2024-09-26 15:13:31 +02:00
8f9e2fc594 Moved is_structured_array() and to_serializable_dtype() to utils, ranamed a few functions and propagated changes to dependent modules. 2024-09-26 14:03:11 +02:00
7ab615019a Renamed take_yml_snapshot_of_hdf5_file func as to_yaml func 2024-09-25 16:49:44 +02:00
57d49a8db0 Moved take_yml_snapshot_of_hdf5_file func and associted helper functions from hdf5_vis.py into hdf5_ops.py 2024-09-25 16:42:44 +02:00
7304655ba5 Moved take_yml_snapshot_of_hdf5_file func and associted helper functions from hdf5_vis.py into hdf5_ops.py 2024-09-25 16:40:16 +02:00
32ba2a13cd Renamed make_dtype_yaml_compatible func as to_serializable_dtype func 2024-09-25 16:36:50 +02:00
3e143fb9c7 Abstracted reusable steps in integration_sources as dima_pipeline.py and added functionality to make a collection of hdf5 files, where each represents an single experiment of campaign. 2024-09-25 15:23:23 +02:00
dd8fc1a906 Robustified definition of path_to_input_dir arg or parameter by ensuring is always defined using forward slashes and then is normalized to the os specification. Improved dry run = True of copy directory func. 2024-09-25 15:12:19 +02:00
90d43a46f8 Fixed instrument_dir estimation to be bottom up, ie, based on path to file. Otherwise, it does not work when dima used as submodule 2024-09-19 15:47:11 +02:00
0e354a0f14 Moved src/metadata_review_lib.py pipelines/metadata_revision.py 2024-09-17 16:55:22 +02:00
de859102ab Moved src/data_integration_lib.py -> pipelines/data_integration.py 2024-09-17 15:32:23 +02:00
59861c3aa8 Refactored code into functions to parse and validate yaml condif file and to perform specified data integration task using a pipeline like software structure. 2024-09-17 15:28:11 +02:00
7b3b453db1 Major update. Remove file filtering option and outputname input arg. The output name is now the same as the path_to_input_dir + .h5. By default, the hdf5 writer preserves second level subdirectories and the rest are flattend. dir filtering is outsource to copy_dir_with_constraints from utils- 2024-09-16 16:35:09 +02:00
eec38f61d7 Restructured a bit to include the default case of copying an imnput directory without any constraints. Also, added dry_run input argument that returns a path to files dict representation of output directory without making an actual copy. Useful when input directory is already safe to work with directly 2024-09-16 15:38:30 +02:00
6d91c043f8 Renamed parameter 'input_file_system_path' to 'path_to_input_directory' for clarity. 2024-09-16 14:24:55 +02:00
85b4909713 Fixed import statement 2024-09-13 15:11:25 +02:00
0f913e5002 move def get_parent_child_relationships(file: h5py.File) from ..._vis.py to ..._ops.py 2024-09-13 14:59:11 +02:00
4813359a4f src/hdf5_data_extraction.py -> src/hdf5_ops.py 2024-09-13 14:55:12 +02:00
4525c1ba04 Added new method to retreive metadata from h5file at a given obj path 2024-09-13 14:52:07 +02:00
3e1a46ebc7 Fixed import statement after module's relocation 2024-08-23 16:23:57 +02:00
926dc9208a Modified to use filereader_registry.py. 2024-08-23 16:10:23 +02:00
1e0da55abc Removed and splitted into instruments/readers/filereader_registry.py instruments/readers/g5505_text_reader.py instruments/readers/xps_ibw_reader.py 2024-08-23 16:09:04 +02:00
0a58e86bcb Split instruments/readers/g5505_file_reader.py into a fileregistry.py and independent file readers. This is to improve instrument modularity and additions 2024-08-23 16:06:44 +02:00
cfae414b0e Renamed to reflect better the functionality of the file 2024-08-23 15:50:14 +02:00
b499ef2845 Integrated copy h5 file into group functionality, imported from g5505_file_reader 2024-08-23 15:47:04 +02:00
7ad4e686a7 Moved copy_file_in_group() into hdf5_lib.py because it is not really doing the same role of all filereaders 2024-08-23 15:45:32 +02:00
33ad9acdd4 Moved all yaml files with dictionary terms for each instrument to dictionaries folder 2024-08-23 14:32:23 +02:00
f20e02d62f Added ACSM_TOFWARE metadata descriptions 2024-08-23 14:23:32 +02:00
17dd1f1864 Modified import statements to account for reader module's relocation. 2024-08-23 13:27:26 +02:00
a33e2b681f Fixed a few import dependencies after relocating this file. 2024-08-23 10:57:13 +02:00
e76ed79f1e Moved src/g5505_file_reader.py -> instruments/readers/g5505_file_reader.py to increase modularity with respect to new intrument additions. 2024-08-23 10:11:29 +02:00
b22b0e94e4 Moved src/g5505_utils.py to utils/g5505_utils.py 2024-08-23 07:27:39 +02:00
9d917226af Moved get_parent_relationships func into hdf5_vis.py and cleaned up unused import statements 2024-08-22 09:50:26 +02:00
da6cca1632 Moved get_parent_child_relationships() funct from hdf5_lib.py tinto hdf5_vis.py to avoid circular dependency between the lower level and higher level module. Thus removed also src.hdf5_lib.py import statement. 2024-08-22 09:47:57 +02:00
d6dce9a392 Implemented method for appending new attributes to an specific object. 2024-08-16 09:32:58 +02:00
ea13f2b71b Implemented method to reformat a given column in a datatable holding datetime info into a desired datetime format. During data integration this will serve to normalize datatime formats across data tables 2024-08-16 08:08:28 +02:00
3fc96a89d2 Added method to reformat columns containing datetime byte strings into a desired datetime formated object 2024-08-14 16:22:28 +02:00
6a0ae327ae Changed link to descriptions according to new instrument folder location. 2024-08-12 13:40:43 +02:00
9d77f4815c Modified code to point to new instrument folders location. Also, upgrated code to accept either a user specified location or the default location 2024-08-12 13:40:01 +02:00
ac23822b0e Moved instruments folder outside src/. 2024-08-12 10:09:21 +02:00
291a5cc1b6 Implemented dataset append method in HDF5DatOpsAPI 2024-08-09 15:25:09 +02:00
52a2303054 Developed a class to manage data operations on a given hdf5 file 2024-08-09 13:23:54 +02:00
fbc8c5ebc3 Removed time stamp configuration attributes from ACSM_TOFWARE, because it can be messy for a configuration file. 2024-08-08 11:24:41 +02:00
780b2302b3 Updated file with new instrument configuration ACSM. 2024-08-07 16:38:52 +02:00
99fb2de6d8 Moved ext_to_reader_dict to g5505_file_reader.py and replaced redear selection based on g5505_reader.select_file_reader(hdf5_file_path). 2024-08-07 16:30:36 +02:00
381d330ee6 Moved hdf5_file_path to file reader mapping and extension definitions to g5505_file_reader_module.py. Created functions to compute file_reader key from path to file in the hdf5 file and select the reader based on the key. This should enable more modular file reader selection. 2024-08-07 16:21:22 +02:00
1acbd2f758 Modified reader to output table_preamble as a dataset as opposed to attributes of the file. I believe this is better for readability of the metadata given that those preambles can sometimes contain large ammounts of text. 2024-08-02 14:37:06 +02:00
d7f7223d31 Modified .yaml config files to satisty metadata naming expectations. 2024-07-17 08:50:24 +02:00
79a593cbbb Changed names of expected root level metadata attributes. 2024-07-17 08:48:47 +02:00
6c50625002 Added attribution insertion order tracking at the root level and reorganized a few import statements. 2024-07-17 08:41:40 +02:00
085ddda0b2 Made edits to documentation 2024-07-11 13:42:38 +02:00
6ba5a1fa2e Robustified column name to description assigment, however it may be a bit slower than before. 2024-07-10 13:31:47 +02:00
cbc560f7e0 Updated the yaml instrument descriptions. 2024-07-10 13:29:14 +02:00
586dcef621 Moved parse_attribute() from ..review_lib.py into ...utils.py and backpropagate (refactored) changes to respective modules. 2024-07-10 11:32:00 +02:00
8c93c2d97b Modified return datetime output to a format without colons, which could be problematic for filenaming. 2024-07-10 09:47:56 +02:00
3d8b46cf05 Moved a few functions from ...reader.py and hdf5_lib.py into ..utils.py, and refactored accordingly. 2024-07-10 09:19:30 +02:00
407b287c56 Removed smogchamber reader because its funtionality is now integrated into g5505_file_reader.py. 2024-07-09 16:13:01 +02:00
aa69faa995 Removed non utilized code. 2024-07-08 15:29:13 +02:00
2992f0a645 Cleaned code and modified def create_hdf5_file_from_dataframe to create group hierichy implicitly from path rather than recursively. 2024-07-08 15:24:48 +02:00
635b158dad Moved remaining git operations in metadata_review_lib.py to git_ops.py and refactored accoringly 2024-07-05 15:46:20 +02:00
57ee91df7d Merge branch 'main' of https://gitlab.psi.ch/5505/dima 2024-07-02 16:50:08 +02:00
926a0f9e08 Updated documentation. 2024-07-02 16:49:48 +02:00
1287d8d31f Merge branch 'main' of https://gitlab.psi.ch/5505/dima 2024-07-01 16:20:06 +02:00
fe2e9400fd Modified created at function to output date time and time zone 2024-07-01 16:19:28 +02:00
b21ccbddf0 Renamed script_name to processing_file. 2024-07-01 16:17:25 +02:00
2903856f46 Made a few edits. 2024-06-21 15:55:44 +02:00
29be99d479 Merge branch 'main' of https://gitlab.psi.ch/5505/dima 2024-06-21 15:42:46 +02:00
c8113dd0d2 Cleared out outputs. 2024-06-21 15:42:23 +02:00
dde01bae8b Added a few root level metadata names and definitions 2024-06-21 15:40:38 +02:00
72fc77d755 Implemented input argument to enable append information to exisintg attributes, which must take the values of either strings or lists. 2024-06-20 15:32:33 +02:00
0cc6cf0785 Added a few lines to detect the existence of the file and change the file mode from 'w' to 'a' based on that information. 2024-06-20 09:03:47 +02:00
210379a2b4 Updated function to add project level metadata at the root group of the hdf5 file. 2024-06-19 18:31:11 +02:00
ee377ef30a Incorporated method to MetadataHarvester class to collect project level metadata. 2024-06-19 18:30:02 +02:00
2113a17e40 Added code to parse dict attributes. 2024-06-18 14:42:51 +02:00
60f4497711 Fixed bug regarding datetime to str column conversion in dataframe by using .map(srt) (element wise operation) as opposed to .apply(str) 2024-06-18 09:21:46 +02:00
2ea9269f75 Replaced applymap to .apply because the former is being depricated 2024-06-17 13:47:54 +02:00
86a811e6aa Created function to save dataframes with annotations in hdf5 format 2024-06-17 13:36:05 +02:00
652f311c8d Added metadata printer method and rewrote slightly a few class terms. 2024-06-17 08:44:44 +02:00
9f6533e53b Incorporated dataframe_to_np_structured_array(df: pd.DataFrame) from another module. 2024-06-16 18:39:30 +02:00
bda5e87cc8 Incorporated dataframe_to_np_structured_array(df: pd.DataFrame) from another module. 2024-06-16 18:26:12 +02:00
d2e53dca3f Moved dataframe_to_np_structured_array(df: pd.DataFrame) to src/g5505_utils.py. This is a more generic function that can be used more broadly accross modules. 2024-06-16 18:25:08 +02:00
f7f91aa105 Removed lenthy example. 2024-06-13 16:03:04 +02:00
1c937222fd Replaced add_data_level_info to add_dataset. 2024-06-13 16:01:27 +02:00
2a28d45b13 Developed a metadata harvesting object to facilitate metadata collection throught the code. 2024-06-13 15:47:02 +02:00
71e1fffd1a Modified a few variable values in yaml files so that they are within expected values. 2024-06-13 15:45:39 +02:00
622661d4d3 Abstracted a code snippet from def create_hdf5_file_from_filesystem_path(..) as transfer_file_dict_to_hdf5() so that it can be reusable. 2024-06-13 15:44:01 +02:00
9b70493fbf Modified hardcoded paths to adapt with respect to the parent directory 2024-06-11 17:30:58 +02:00
cf82678f9e Implemented a data extraction module to access data from an hdf5 file in the form of dataframes. 2024-06-11 10:38:04 +02:00
ba5b8cb407 Removed data table split into categorical and numerical variables and numering is only introduce to disambiguate repeated columns. 2024-06-10 16:18:51 +02:00
ed33e77380 Removed additional numbering from some intrument specifications. These are now only added if the column names are ambigous. 2024-06-10 16:14:13 +02:00
b47ed2b3f4 Fixed bug in the case where data_integration_mode = 'collection'. 2024-06-07 16:45:00 +02:00
9d28c3e1d6 Updated instrument names from ICAD/HONO and ICAD/NO2 to HONO and NO2. 2024-06-07 16:41:41 +02:00
1d241f663c Updated file reader and data integration with datastart and dataend properties. 2024-06-04 13:37:20 +02:00
05e580527e renamed folder src/instrument_descriptions/ to src/intruments/ and moved text_data_sources.yaml in there. 2024-06-04 10:54:09 +02:00
f6154a6777 Added .strip to column names to remove unwanted characters (\r|\t|\n) and included units description to timestamps. 2024-06-04 09:57:37 +02:00
e3dcb1110a Simplified and documented parse_attribute function. 2024-06-04 09:51:12 +02:00
1f7bf98c96 Modified temperature units from °C to Celcius for simpler string encoding. It seems ascii codec cannot encode such a character 2024-06-04 09:44:09 +02:00
0cc4a1f215 Updated treemap visualization to select only root metadata, which is of string type. 2024-06-03 14:17:42 +02:00
236693c66c Tracking metadata file: output_files/smog_chamber_study_2022-07-26_NatashaG.yaml 2024-06-03 07:52:47 +02:00
52d8399bdd Tracking metadata file: output_files/smog_chamber_study_2022-07-26_NatashaG.yaml 2024-06-03 07:44:53 +02:00
afeb2241fc Tracking metadata file: output_files/smog_chamber_study_2022-07-26_NatashaG.yaml 2024-06-03 07:30:11 +02:00
156027a934 Tracking metadata file: output_files/smog_chamber_study_2022-07-26_NatashaG.yaml 2024-06-02 18:28:34 +02:00
f344a45c94 Tracking metadata file: output_files/smog_chamber_study_2022-07-26_NatashaG.yaml 2024-06-02 18:25:39 +02:00
866d4aa4d9 Updated root metadata display in treemaps 2024-06-02 16:43:54 +02:00
25daf66b19 Updated instrument attributes with datetime_format and desired_format. 2024-06-02 16:14:30 +02:00
2b2874cfdc Modified annotate_root_dir function. 2024-06-02 16:02:48 +02:00
85f0e69c2c Updated reader to standardize timestamps to a desired format when possible. The desired format is set in text_data_sources.yaml. 2024-06-02 15:59:01 +02:00
d0395fff5b Implemented functions for data extraction from hdf5 files. 2024-05-31 12:39:10 +02:00
16dda1e834 Incorporated jupyter notebook of simple example metadata annotation workflow. 2024-05-30 12:24:12 +02:00
d15c8924b5 Updated readme file 2024-05-30 12:21:17 +02:00
4f462578ef Updated notebook documentation and included an example metadata annotation notebook. 2024-05-30 12:20:34 +02:00
8fa587ef19 Removed html file no longer useful. 2024-05-30 12:18:28 +02:00
894936f107 Updated YAML config file parsing logic to account for changes in config file description. 2024-05-30 12:16:54 +02:00
3e21ecde7b Decomposed experiment_data into experiment_startdate and experiment_enddate. 2024-05-30 12:15:49 +02:00
b2e807788f Made def third_update_hdf5_file_with_review more modular by separating data update and git operations, resulting new functions that can be reused in less restrictive matadata annotation contexts. 2024-05-29 15:26:48 +02:00
1987d1610f Implemented a git operations module for automated git ops, based on subprocess. 2024-05-29 15:17:09 +02:00
c1e5bc9ddd Updated readme file. 2024-05-29 11:24:46 +02:00
8226f616dd Updated readme file 2024-05-29 11:23:33 +02:00
fb1c627104 Updated project name in configuration file 2024-05-28 15:06:25 +02:00
4fb5ed58b1 Changed ordering of data integration config files so that they align with our experimental campaign hierarchy. 2024-05-28 14:43:32 +02:00
82754e26b0 Refactored due to updates in the file reader function. 2024-05-28 14:41:34 +02:00
0f505df45c added the feature to activate or deactivate data copying before reading the input file. This is to avoid redundant copying when we are already working on file copies. 2024-05-28 14:40:14 +02:00
e0d84d7822 Updated some of the raname_as metadata for all instruments so that it is much machine readable and perhpas be used as an alternative to the original name in future releases. 2024-05-28 14:37:43 +02:00
54e4301e93 Modified function to return list of paths when config_file.yaml integration mode = experimental step. 2024-05-28 11:29:32 +02:00
dfd14fd029 Improved parsing from HDF5 attr dict to yaml compatible dict. Now we can parse HDF5 compound attributes (structured np arrays). 2024-05-28 11:27:44 +02:00
2fe2ac2efa Enhanced data transfer progress visualization and logging 2024-05-28 08:59:29 +02:00
eb89b59702 Fixed bug that didnot allowed analythical_methods composite keywords (e.g., ICAD/HONO) to be matched in intrument configurations. 2024-05-28 08:57:57 +02:00
7bfd895eb5 Implemented reader file compatibility check. 2024-05-27 18:22:16 +02:00
33fec9bd59 Improved modularity of hdf5_file creation by creating a function that copies the intput directory file and applies directory, files, and extensions constraints before regular directory to hdf5 transfer. See [200~def copy_directory_with_contraints(input_dir_path, output_dir_path, select_dir_keywords, select_file_keywords, allowed_file_extensions): 2024-05-27 18:15:08 +02:00
3ea8d1ee40 Refactored list to array conversion using metadata_rewiew_lib 2024-05-26 15:04:07 +02:00
4859d6d2e4 Added function to convert list of strings into a np.array of bytes. This is useful to create list-valued attributes in HDF5. 2024-05-26 14:56:36 +02:00
1e10aad835 Fixed buggy statement. import datetime ... followed by datetime.now() was fixed as datetime.datetime.now(). 2024-05-26 12:26:54 +02:00
e55086b0ad Removed hdf5 file creation redundancy by creating a helper function create_HDF5_file(date_str,select_file_keywords), which handles variations in date_str and keywords. 2024-05-26 12:24:15 +02:00
b4fba4b40c Replaced lambda function with regular function and fstring for better readability and debugging 2024-05-26 11:39:40 +02:00
1012e17905 Replaced print statement with logging and raise exception for better error handling and managment 2024-05-26 11:34:20 +02:00
9ad77da9f8 Added function setup_logging to configure logger to record logs in specified output directory. 2024-05-26 11:19:54 +02:00
e0f1b6b1ff updated env file 2024-05-24 15:55:49 +02:00
34fb1be71f updated readme and reader to handle ignore ascii character errors 2024-05-24 15:55:15 +02:00
7633816c23 Deleted output no longer returned in data integration pipeline 2024-05-24 14:55:08 +02:00
55d3a2c92b Updated readme file 2024-05-24 11:56:30 +02:00
8315f8991b Updated configuration file organization and workflow description. 2024-05-24 11:15:05 +02:00
8cff0d6f74 Commented out openia python module. 2024-05-24 10:54:15 +02:00
e278cde961 Added bottom level instrument metadata descriptions such as units and description. 2024-05-24 09:50:25 +02:00
1c39986503 Removed yaml file output from data integration file. The creation of this file is being outsource to data store repo 2024-05-24 09:32:30 +02:00
292708e745 Removed creation of yaml file subsequent to data integration. This can cause misalignment with data store. I think the yaml snapshot of a hdf5 file should therefore be outsourced there. 2024-05-24 09:30:24 +02:00
c4f12eaa84 Made a few optimizations to code and documentation. Expressions relying on list comprehensions were simplified with generator expressions. ex,: any([keyword in filename for keyword in select_file_keywords]) was simplified to any(keyword in filename for keyword in select_file_keywords). 2024-05-24 09:06:07 +02:00
9c311342d8 Replaced attribute table_header in Lopap configuration file with a shorter version which is consistent accross more files. Some of the headers might change. 2024-05-24 08:55:36 +02:00
67a52ab00a Optimzed and included df to np structured array conversion. \n-Replaced loop plus append with list comprehension. \n-Replaced pd df column concatenation based on row-wise concatenation with df.aggr() method that uses column wise concatenation. 2024-05-23 22:20:19 +02:00
993db5d783 Optimzed and included df to np structured array conversion. \n-Replaced loop plus append with list comprehension. \n-Replaced pd df column concatenation based on row-wise concatenation with df.aggr() method that uses column wise concatenation. 2024-05-23 22:18:37 +02:00
e4b9487575 Replaced commented lines by accurate comments 2024-05-22 20:15:17 +02:00
7c1c0bf33c Simplified code by updating HDF5 attributes using .update() dict method (inherited from dict type). 2024-05-22 20:11:54 +02:00
83de18989f Added feature to interpret links to description in the yaml intrument configuration file and added them at the dataset level as attributes. 2024-05-09 19:17:08 +02:00
e8a13dba20 Added link to descriptions and units of table variables/or columns. These can be used as attributes of datasets from tabular data 2024-05-09 19:15:20 +02:00
6d1b7545e5 Included timestamp specification, which indicates column names in a list that contain datetime information. 2024-04-30 14:51:58 +02:00
67765d53f0 Incorparated feature to merge data and time data which may originally be in separate columns in text source files. This is specified in the text source specification yaml file 2024-04-30 14:50:33 +02:00
fee72bbda6 Performed edits to README.md 2024-04-26 14:33:41 +02:00
faef7db666 Updated readme file with instructions on how to set compound attributes and delete them. 2024-04-26 14:27:01 +02:00
7441d63cd3 Removed unecessary pygit depenedency and associated function that relied on it. 2024-04-26 13:15:33 +02:00
b344a4045f Cleared out jupyter notebook. 2024-04-26 13:09:41 +02:00
9552bfead2 Included new delete attribute and restart review features. 2024-04-26 13:08:27 +02:00
94d717f9db Corrected parsing problem from hdf5 to yaml attribute. Single element arrays are now represented as a scalar as opposed to a list with a single element. 2024-04-26 12:54:41 +02:00
5c4be34ac2 Updated hdf5 file with yaml review file. 2024-04-26 11:30:09 +02:00
9e951c051c Submitted metadata review. 2024-04-26 11:30:05 +02:00
1975cde356 Updated hdf5 file with yaml review file. 2024-04-26 11:28:58 +02:00
08a64eb354 Updated hdf5 file with yaml review file. 2024-04-26 11:07:58 +02:00
1bfa19c63f Submitted metadata review. 2024-04-26 11:07:42 +02:00
70ccc9e56d Initialized metadata review. 2024-04-26 10:56:32 +02:00
657269a2ef Updated hdf5 file with yaml review file. 2024-04-25 16:56:12 +02:00
63b102bae9 Submitted metadata review. 2024-04-25 16:56:06 +02:00
e8409389da Updated hdf5 file with yaml review file. 2024-04-25 16:49:51 +02:00
d0c0014a7d Submitted metadata review. 2024-04-25 16:47:44 +02:00
08bf5bc27f Initialized metadata review. 2024-04-25 16:45:20 +02:00
20 changed files with 8162 additions and 1005 deletions

1
.gitignore vendored
View File

@ -7,4 +7,3 @@ logs/
envs/
hidden.py
output_files/
.env

View File

@ -1,22 +0,0 @@
# Changelog
All notable changes to this project will be documented in this file, which is a **cumulative record**.
Each version entry follows a consistent structure with the following optional sections:
- **Added** New features
- **Changed** Modifications to existing functionality
- **Deprecated** Features marked for future removal
- **Removed** Features removed in this version
- **Fixed** Bug fixes
- **Security** Vulnerability fixes
Format based on [Keep a Changelog](https://keepachangelog.com) and [Semantic Versioning](https://semver.org).
## [1.0.0] - 2025-06-26
### Added
- Multi-format, multi-instrument file reading system for FAIR data processing
- Data integration pipeline with YAML-based configuration for cross-project adaptability
- Metadata revision and normalization pipeline
- HDF5 manager object for data extraction, handling, and visualization

View File

@ -32,10 +32,7 @@ For **Windows** users, the following are required:
2. **Conda**: Install [Anaconda](https://www.anaconda.com/products/individual) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html).
3. **PSI Network Access**
Ensure you have access to the PSI internal network and the necessary permissions to access the source directories. See [notebooks/demo_data_integration.ipynb](notebooks/demo_data_integration.ipynb) for details on how to set up data integration from network drives.
3. **PSI Network Access**: Ensure access to PSIs network and access rights to source drives for retrieving campaign data from YAML files in the `input_files/` folder.
:bulb: **Tip**: Editing your systems PATH variable ensures both Conda and Git are available in the terminal environment used by Git Bash.
@ -46,11 +43,11 @@ For **Windows** users, the following are required:
Open a **Git Bash** terminal.
Navigate to your `Gitea` folder, clone the repository, and navigate to the `dima` folder as follows:
Navigate to your `GitLab` folder, clone the repository, and navigate to the `dima` folder as follows:
```bash
cd path/to/Gitea
git clone --recurse-submodules https://gitea.psi.ch/5505-public/dima.git
cd path/to/GitLab
git clone --recurse-submodules https://gitlab.psi.ch/5505/dima.git
cd dima
```
@ -209,7 +206,7 @@ This section is in progress!
| actris_level | - | Indicates the processing level of the data within the ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) framework. |
| dataset_startdate | - | Denotes the start datetime of the dataset collection. |
| dataset_enddate | - | Denotes the end datetime of the dataset collection. |
| processing_script | - | Denotes the name of the file used to process an initial version (e.g, original version) of the dataset into a processed dataset. |
| processing_file | - | Denotes the name of the file used to process an initial version (e.g, original version) of the dataset into a processed dataset. |
| processing_date | - | The date when the data processing was completed. | |
## Adaptability to Experimental Campaign Needs

View File

@ -1,8 +1,8 @@
# Path to the directory where raw data is stored
input_file_directory: '${NETWORK_MOUNT}/Data'
input_file_directory: '//fs101/5505/Data'
# Path to directory where raw data is copied and converted to HDF5 format for local analysis.
output_file_directory: '../data/'
output_file_directory: '../output_files/'
# Project metadata for data lineage and provenance
project: 'Photoenhanced uptake of NO2 driven by Fe(III)-carboxylate'

View File

@ -1,8 +1,8 @@
# Path to the directory where raw data is stored
input_file_directory: '${NETWORK_MOUNT}/Chamber Data/L0 -raw data'
input_file_directory: '//fs03/Iron_Sulphate'
# Path to directory where raw data is copied and converted to HDF5 format for local analysis.
output_file_directory: '../data/'
output_file_directory: 'output_files/'
# Project metadata for data lineage and provenance
project: 'Fe SOA project'

View File

@ -1,8 +1,8 @@
# Path to the directory where raw data is stored
input_file_directory: '${NETWORK_MOUNT}/People/Juan/TypicalBeamTime'
input_file_directory: '//fs101/5505/People/Juan/TypicalBeamTime'
# Path to directory where raw data is copied and converted to HDF5 format for local analysis.
output_file_directory: '../data/'
output_file_directory: 'output_files/'
# Project metadata for data lineage and provenance
project: 'Beamtime May 2024, Ice Napp'

View File

@ -1,42 +0,0 @@
table_header:
w_CenterTime:
description: time between start and stop of the measurement
units: YYYY/MM/DD HH:MM:SS
rename_as: center_time
w_StartTime:
description: Start time of the measurement
units: YYYY/MM/DD HH:MM:SS
rename_as: start_time
w_StopTime:
description: Stop time of the measurement
units: YYYY/MM/DD HH:MM:SS
rename_as: stop_time
w_I2_molec_cm3:
description: I2 concentration
units: cm^-1
rename_as: i2_concentration
w_I2_SlCol:
description: I2 concentration sl #?
units: ppb #?
rename_as: i2_sl
w_I2_SlErr:
description: Uncertainty in I2 concentration sl #?
units: ppb #?
rename_as: i2_sl_uncertainty
w_I2_VMR:
description: I2 concentration vmr #?
units: ppb #?
rename_as: i2_vmr
w_I2_VMRErr:
description: Uncertainty in I2 concentration vmr
units: ppb #?
rename_as: i2_vmr_uncertainty
w_Rho:
description: Rho #?
units: ppb #?
rename_as: rho
w_RMS:
description: RMS #?
units: ppb #?
rename_as: rms

View File

@ -16,9 +16,8 @@ from instruments.readers.g5505_text_reader import read_txt_files_as_dict
from instruments.readers.acsm_tofware_reader import read_acsm_files_as_dict
from instruments.readers.acsm_flag_reader import read_jsonflag_as_dict
from instruments.readers.nasa_ames_reader import read_nasa_ames_as_dict
from instruments.readers.structured_file_reader import read_structured_file_as_dict
file_extensions = ['.ibw','.txt','.dat','.h5','.TXT','.csv','.pkl','.json','.yaml','yml','.nas']
file_extensions = ['.ibw','.txt','.dat','.h5','.TXT','.csv','.pkl','.json','.yaml','.nas']
# Define the instruments directory (modify this as needed or set to None)
default_instruments_dir = None # or provide an absolute path
@ -28,16 +27,11 @@ file_readers = {
'txt': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
'dat': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
'csv': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
'yaml': lambda a1: read_structured_file_as_dict(a1),
'yml': lambda a1: read_structured_file_as_dict(a1),
'json': lambda a1: read_structured_file_as_dict(a1),
'ACSM_TOFWARE_txt' : lambda x: read_acsm_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False),
'ACSM_TOFWARE_csv' : lambda x: read_acsm_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False),
'ACSM_TOFWARE_flags_json' : lambda x: read_jsonflag_as_dict(x),
'ACSM_TOFWARE_nas' : lambda x: read_nasa_ames_as_dict(x)}
file_readers.update({'CEDOAS_txt' : lambda x: read_txt_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False)})
REGISTRY_FILE = "registry.yaml" #os.path.join(os.path.dirname(__file__), "registry.yaml")
def load_registry():
@ -58,7 +52,7 @@ def find_reader(instrument_folder, file_extension):
registry = load_registry()
for entry in registry:
if entry["instrumentFolderName"] == instrument_folder and (file_extension in entry["fileExtension"].split(sep=',')):
if entry["instrumentFolderName"] == instrument_folder and entry["fileExtension"] == file_extension:
return entry["fileReaderPath"], entry["InstrumentDictionaryPath"]
return None, None # Not found

View File

@ -81,18 +81,32 @@ gas:
datetime_format: '%Y.%m.%d %H:%M:%S'
link_to_description: 'dictionaries/gas.yaml'
CEDOAS: #CE-DOAS/I2:
formats:
- table_header: 'w_CenterTime w_StartTime w_StopTime w_I2_molec_cm3 w_I2_SlCol w_I2_SlErr w_I2_VMR w_I2_VMRErr w_Rho w_RMS'
separator: '\t'
file_encoding: 'utf-8'
timestamp: ['w_CenterTime']
datetime_format: '%Y/%m/%d %H:%M:%S'
ACSM_TOFWARE:
table_header:
#txt:
- 't_base VaporizerTemp_C HeaterBias_V FlowRefWave FlowRate_mb FlowRate_ccs FilamentEmission_mA Detector_V AnalogInput06_V ABRefWave ABsamp ABCorrFact'
- 't_start_Buf,Chl_11000,NH4_11000,SO4_11000,NO3_11000,Org_11000,SO4_48_11000,SO4_62_11000,SO4_82_11000,SO4_81_11000,SO4_98_11000,NO3_30_11000,Org_60_11000,Org_43_11000,Org_44_11000'
#csv:
- "X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 X69 X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 X82 X83 X84 X85 X86 X87 X88 X89 X90 X91 X92 X93 X94 X95 X96 X97 X98 X99 X100 X101 X102 X103 X104 X105 X106 X107 X108 X109 X110 X111 X112 X113 X114 X115 X116 X117 X118 X119 X120 X121 X122 X123 X124 X125 X126 X127 X128 X129 X130 X131 X132 X133 X134 X135 X136 X137 X138 X139 X140 X141 X142 X143 X144 X145 X146 X147 X148 X149 X150 X151 X152 X153 X154 X155 X156 X157 X158 X159 X160 X161 X162 X163 X164 X165 X166 X167 X168 X169 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X180 X181 X182 X183 X184 X185 X186 X187 X188 X189 X190 X191 X192 X193 X194 X195 X196 X197 X198 X199 X200 X201 X202 X203 X204 X205 X206 X207 X208 X209 X210 X211 X212 X213 X214 X215 X216 X217 X218 X219"
- "X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 X69 X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 X82 X83 X84 X85 X86 X87 X88 X89 X90 X91 X92 X93 X94 X95 X96 X97 X98 X99 X100 X101 X102 X103 X104 X105 X106 X107 X108 X109 X110 X111 X112 X113 X114 X115 X116 X117 X118 X119 X120 X121 X122 X123 X124 X125 X126 X127 X128 X129 X130 X131 X132 X133 X134 X135 X136 X137 X138 X139 X140 X141 X142 X143 X144 X145 X146 X147 X148 X149 X150 X151 X152 X153 X154 X155 X156 X157 X158 X159 X160 X161 X162 X163 X164 X165 X166 X167 X168 X169 X170 X171 X172 X173 X174 X175 X176 X177 X178 X179 X180 X181 X182 X183 X184 X185 X186 X187 X188 X189 X190 X191 X192 X193 X194 X195 X196 X197 X198 X199 X200 X201 X202 X203 X204 X205 X206 X207 X208 X209 X210 X211 X212 X213 X214 X215 X216 X217 X218 X219"
- 'MSS_base'
- 'tseries'
separator:
#txt:
- "\t"
- ","
#csv:
- "\t"
- "\t"
- "None"
- "None"
file_encoding:
#txt:
- "utf-8"
- "utf-8"
#csv:
- "utf-8"
- "utf-8"
- "utf-8"
- "utf-8"
- table_header: 'TimeStamp,Seconds_Midnight,Year,Month,Day,Hour,Minute,Second,HK0,HK1,HK2,HK3,HK4,HK5,HK6,HK7,HK8,HK9,HK10,HK11,HK12,HK13,HK14,HK15,RTD0_OO1,RTD1_LED,RTD2,RTD3_CBox,RTD4_Gas1,RTD5,RTD6,RTD7,Temp0,Temp1,Temp2,Temp3,DutyCycle0,DutyCycle1,DutyCycle2,DutyCycle3,Relay4,Relay5,Shutter0,Shutter1,Diode0Threshold,Diode0Hysteresis,Diode1Threshold,Diode1Hysteresis,SWTargetPosition,SWCurrentPosition,ELTargetPosition'
separator: ','
file_encoding: 'utf-8'
#timestamp: []
#datetime_format:
link_to_description: 'dictionaries/CEDOAS.yaml'

View File

@ -19,7 +19,16 @@ import yaml
import h5py
import argparse
import logging
import warnings
# Import project modules
#root_dir = os.path.abspath(os.curdir)
#sys.path.append(root_dir)
#try:
# from dima.utils import g5505_utils as utils
#except ModuleNotFoundError:
# import utils.g5505_utils as utils
# import src.hdf5_ops as hdf5_ops
import utils.g5505_utils as utils
@ -32,19 +41,56 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
module_dir = os.path.dirname(__file__)
instruments_dir = os.path.join(module_dir, '..')
#(config_dict,
#file_encoding,
#separator,
#table_header,
#timestamp_variables,
#datetime_format,
#description_dict) = load_file_reader_parameters(filename, instruments_dir)
# Normalize the path (resolves any '..' in the path)
instrument_configs_path = os.path.abspath(os.path.join(instruments_dir,'readers','config_text_reader.yaml'))
format_variants, description_dict = load_file_reader_parameters(filename, instruments_dir)
print(instrument_configs_path)
with open(instrument_configs_path,'r') as stream:
try:
config_dict = yaml.load(stream, Loader=yaml.FullLoader)
except yaml.YAMLError as exc:
print(exc)
# Verify if file can be read by available intrument configurations.
#if not any(key in filename.replace(os.sep,'/') for key in config_dict.keys()):
# return {}
#TODO: this may be prone to error if assumed folder structure is non compliant
file_encoding = config_dict['default']['file_encoding'] #'utf-8'
separator = config_dict['default']['separator']
table_header = config_dict['default']['table_header']
timestamp_variables = []
datetime_format = []
tb_idx = 0
column_names = ''
description_dict = {}
for instFolder in config_dict.keys():
if instFolder in filename.split(os.sep):
file_encoding = config_dict[instFolder].get('file_encoding',file_encoding)
separator = config_dict[instFolder].get('separator',separator)
table_header = config_dict[instFolder].get('table_header',table_header)
timestamp_variables = config_dict[instFolder].get('timestamp',[])
datetime_format = config_dict[instFolder].get('datetime_format',[])
link_to_description = config_dict[instFolder].get('link_to_description', '').replace('/', os.sep)
if link_to_description:
path = os.path.join(instruments_dir, link_to_description)
try:
with open(path, 'r') as stream:
description_dict = yaml.load(stream, Loader=yaml.FullLoader)
except (FileNotFoundError, yaml.YAMLError) as exc:
print(exc)
#if 'None' in table_header:
# return {}
# Read header as a dictionary and detect where data table starts
header_dict = {'actris_level': 0, 'processing_date':utils.created_at(), 'processing_script' : os.path.relpath(thisFilePath,dimaPath)}
header_dict = {}
data_start = False
# Work with copy of the file for safety
if work_with_copy:
@ -52,35 +98,77 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
else:
tmp_filename = filename
# Run header detection
header_line_number, column_names, fmt_dict, table_preamble = detect_table_header_line(tmp_filename, format_variants)
#with open(tmp_filename,'rb',encoding=file_encoding,errors='ignore') as f:
# Unpack validated format info
table_header = fmt_dict['table_header']
separator = fmt_dict['separator']
file_encoding = fmt_dict['file_encoding']
timestamp_variables = fmt_dict.get('timestamp', [])
datetime_format = fmt_dict.get('datetime_format', None)
desired_datetime_fmt = fmt_dict.get('desired_datetime_format', None)
if not isinstance(table_header, list):
# Ensure separator is valid
if not isinstance(separator, str) or not separator.strip():
raise ValueError(f"Invalid separator found in format: {repr(separator)}")
table_header = [table_header]
file_encoding = [file_encoding]
separator = [separator]
# Load DataFrame
try:
table_preamble = []
line_number = 0
if 'infer' not in table_header:
with open(tmp_filename,'rb') as f:
for line_number, line in enumerate(f):
decoded_line = line.decode(file_encoding[tb_idx])
for tb_idx, tb in enumerate(table_header):
print(tb)
if tb in decoded_line:
break
if tb in decoded_line:
list_of_substrings = decoded_line.split(separator[tb_idx].replace('\\t','\t'))
# Count occurrences of each substring
substring_counts = collections.Counter(list_of_substrings)
data_start = True
# Generate column names with appended index only for repeated substrings
column_names = [f"{i}_{name.strip()}" if substring_counts[name] > 1 else name.strip() for i, name in enumerate(list_of_substrings)]
#column_names = [str(i)+'_'+name.strip() for i, name in enumerate(list_of_substrings)]
#column_names = []
#for i, name in enumerate(list_of_substrings):
# column_names.append(str(i)+'_'+name)
#print(line_number, len(column_names ),'\n')
break
else:
print('Table header was not detected.')
# Subdivide line into words, and join them by single space.
# I asumme this can produce a cleaner line that contains no weird separator characters \t \r or extra spaces and so on.
list_of_substrings = decoded_line.split()
# TODO: ideally we should use a multilinear string but the yalm parser is not recognizing \n as special character
#line = ' '.join(list_of_substrings+['\n'])
#line = ' '.join(list_of_substrings)
table_preamble.append(' '.join([item for item in list_of_substrings]))# += new_line
# TODO: it does not work with separator as none :(. fix for RGA
try:
print(column_names)
if not 'infer' in table_header:
#print(table_header)
#print(file_encoding[tb_idx])
df = pd.read_csv(tmp_filename,
delimiter=separator,
header=header_line_number,
encoding=file_encoding,
delimiter = separator[tb_idx].replace('\\t','\t'),
header=line_number,
#encoding='latin-1',
encoding = file_encoding[tb_idx],
names=column_names,
skip_blank_lines=True)
else:
df = pd.read_csv(tmp_filename,
delimiter=separator,
header=header_line_number,
encoding=file_encoding,
delimiter = separator[tb_idx].replace('\\t','\t'),
header=line_number,
encoding = file_encoding[tb_idx],
skip_blank_lines=True)
df_numerical_attrs = df.select_dtypes(include ='number')
@ -89,10 +177,6 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
# Consolidate into single timestamp column the separate columns 'date' 'time' specified in text_data_source.yaml
if timestamp_variables:
if not all(col in df_categorical_attrs.columns for col in timestamp_variables):
raise ValueError(f"Invalid timestamp columns: {[col for col in timestamp_variables if col not in df_categorical_attrs.columns]}.")
#df_categorical_attrs['timestamps'] = [' '.join(df_categorical_attrs.loc[i,timestamp_variables].to_numpy()) for i in df.index]
#df_categorical_attrs['timestamps'] = [ df_categorical_attrs.loc[i,'0_Date']+' '+df_categorical_attrs.loc[i,'1_Time'] for i in df.index]
@ -108,7 +192,7 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
df_categorical_attrs = df_categorical_attrs.loc[valid_indices,:]
df_numerical_attrs = df_numerical_attrs.loc[valid_indices,:]
df_categorical_attrs[timestamps_name] = df_categorical_attrs[timestamps_name].dt.strftime(desired_datetime_fmt)
df_categorical_attrs[timestamps_name] = df_categorical_attrs[timestamps_name].dt.strftime(config_dict['default']['desired_format'])
startdate = df_categorical_attrs[timestamps_name].min()
enddate = df_categorical_attrs[timestamps_name].max()
@ -121,6 +205,12 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
df_categorical_attrs = df_categorical_attrs.drop(columns = timestamp_variables)
#df_categorical_attrs.reindex(drop=True)
#df_numerical_attrs.reindex(drop=True)
categorical_variables = [item for item in df_categorical_attrs.columns]
####
#elif 'RGA' in filename:
# df_categorical_attrs = df_categorical_attrs.rename(columns={'0_Time(s)' : 'timestamps'})
@ -195,169 +285,13 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
# if timestamps_name in categorical_variables:
# dataset['attributes'] = {timestamps_name: utils.parse_attribute({'unit':'YYYY-MM-DD HH:MM:SS.ffffff'})}
# file_dict['datasets'].append(dataset)
#except Exception as e:
except Exception as e:
#raise RuntimeError(f"Failed to read file with detected format: {e}")
print(e)
return {}
return file_dict
## Supporting functions
def detect_table_header_line(filepath, format_variants, verbose=False):
"""
Tries multiple format variants to detect the table header line in the file.
Args:
filepath (str): Path to file.
format_variants (List[Dict]): Each must contain:
- 'file_encoding' (str)
- 'separator' (str)
- 'table_header' (str or list of str)
verbose (bool): If True, prints debug info.
Returns:
Tuple:
- header_line_idx (int)
- column_names (List[str])
- matched_format (Dict[str, Any]) # full format dict (validated)
- preamble_lines (List[str])
"""
import collections
import warnings
for idx, fmt in enumerate(format_variants):
# Validate format dict
if 'file_encoding' not in fmt or not isinstance(fmt['file_encoding'], str):
raise ValueError(f"[Format {idx}] 'file_encoding' must be a string.")
if 'separator' not in fmt or not isinstance(fmt['separator'], str):
raise ValueError(f"[Format {idx}] 'separator' must be a string.")
if 'table_header' not in fmt or not isinstance(fmt['table_header'], (str, list)):
raise ValueError(f"[Format {idx}] 'table_header' must be a string or list of strings.")
encoding = fmt['file_encoding']
separator = fmt['separator']
header_patterns = fmt['table_header']
if isinstance(header_patterns, str):
header_patterns = [header_patterns]
preamble_lines = []
try:
with open(filepath, 'rb') as f:
for line_number, line in enumerate(f):
try:
decoded_line = line.decode(encoding)
except UnicodeDecodeError:
break # Try next format
for pattern in header_patterns:
if pattern in decoded_line:
substrings = decoded_line.split(separator.replace('\\t', '\t'))
counts = collections.Counter(substrings)
column_names = [
f"{i}_{name.strip()}" if counts[name] > 1 else name.strip()
for i, name in enumerate(substrings)
]
if verbose:
print(f"[Detected header] Line {line_number}: {column_names}")
return line_number, column_names, fmt, preamble_lines
preamble_lines.append(' '.join(decoded_line.split()))
except Exception as e:
if verbose:
print(f"[Format {idx}] Attempt failed: {e}")
continue
warnings.warn("Table header was not detected using known patterns. Will attempt inference mode.")
# Return fallback format with 'infer' but retain encoding/separator from first variant
fallback_fmt = {
'file_encoding': 'utf-8',
'separator': ',',
'table_header': ['infer']
}
return -1, [], fallback_fmt, []
def load_file_reader_parameters(filename: str, instruments_dir: str) -> tuple:
"""
Load file reader configuration parameters based on the file and instrument directory.
Returns:
- format_variants: List of dicts with keys:
'file_encoding', 'separator', 'table_header', 'timestamp', 'datetime_format', 'desired_datetime_format'
- description_dict: Dict loaded from instrument's description YAML
"""
config_path = os.path.abspath(os.path.join(instruments_dir, 'readers', 'config_text_reader.yaml'))
if not os.path.exists(config_path):
config_path = os.path.join(dimaPath,'instruments','readers', 'config_text_reader.yaml')
try:
with open(config_path, 'r') as stream:
config_dict = yaml.load(stream, Loader=yaml.FullLoader)
except yaml.YAMLError as exc:
print(f"[YAML Load Error] {exc}")
return {}, [], {}
default_config = config_dict.get('default', {})
default_format = {
'file_encoding': default_config.get('file_encoding', 'utf-8'),
'separator': default_config.get('separator', ',').replace('\\t','\t'),
'table_header': default_config.get('table_header', 'infer'),
'timestamp': [],
'datetime_format': default_config.get('datetime_format', '%Y-%m-%d %H:%M:%S.%f'),
'desired_datetime_format' : default_config.get('desired_format', '%Y-%m-%d %H:%M:%S.%f')
}
format_variants = []
description_dict = {}
# Match instrument key by folder name in file path
filename = os.path.normpath(filename)
for instFolder in config_dict.keys():
if instFolder in filename.split(os.sep):
inst_config = config_dict[instFolder]
# New style: has 'formats' block
if 'formats' in inst_config:
for fmt in inst_config['formats']:
format_variants.append({
'file_encoding': fmt.get('file_encoding', default_format['file_encoding']),
'separator': fmt.get('separator', default_format['separator']),
'table_header': fmt.get('table_header', default_format['table_header']),
'timestamp': fmt.get('timestamp', []),
'datetime_format': fmt.get('datetime_format', default_format['desired_datetime_format']),
'desired_datetime_format' :default_format['desired_datetime_format']
})
else:
# Old style: flat format
format_variants.append({
'file_encoding': inst_config.get('file_encoding', default_format['file_encoding']),
'separator': inst_config.get('separator', default_format['separator']),
'table_header': inst_config.get('table_header', default_format['table_header']),
'timestamp': inst_config.get('timestamp', []),
'datetime_format': inst_config.get('datetime_format', default_format['desired_datetime_format']),
'desired_datetime_format' : default_format['desired_datetime_format']
})
# Description loading
link_to_description = inst_config.get('link_to_description', '').replace('/', os.sep)
if link_to_description:
desc_path = os.path.join(instruments_dir, link_to_description)
try:
with open(desc_path, 'r') as desc_stream:
description_dict = yaml.load(desc_stream, Loader=yaml.FullLoader)
except (FileNotFoundError, yaml.YAMLError) as exc:
print(f"[Description Load Error] {exc}")
break # Stop after first match
# Always return config_dict + list of formats + description
return format_variants, description_dict
if __name__ == "__main__":

View File

@ -1,115 +0,0 @@
import sys
import os
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
import pandas as pd
import json, yaml
import h5py
import argparse
import logging
import utils.g5505_utils as utils
def read_structured_file_as_dict(path_to_file):
"""
Reads a JSON or YAML file, flattens nested structures using pandas.json_normalize,
converts to a NumPy structured array via utils.convert_attrdict_to_np_structured_array,
and returns a standardized dictionary.
"""
file_dict = {}
_, path_head = os.path.split(path_to_file)
file_dict['name'] = path_head
file_dict['attributes_dict'] = {'actris_level': 0, 'processing_date': utils.created_at(), 'processing_script' : os.path.relpath(thisFilePath,dimaPath)}
file_dict['datasets'] = []
try:
with open(path_to_file, 'r') as stream:
if path_to_file.endswith(('.yaml', '.yml')):
raw_data = yaml.safe_load(stream)
elif path_to_file.endswith('.json'):
raw_data = json.load(stream)
else:
raise ValueError(f"Unsupported file type: {path_to_file}")
except Exception as exc:
logging.error("Failed to load input file %s: %s", path_to_file, exc)
raise
try:
df = pd.json_normalize(raw_data)
except Exception as exc:
logging.error("Failed to normalize data structure: %s", exc)
raise
for item_idx, item in enumerate(df.to_dict(orient='records')):
try:
structured_array = utils.convert_attrdict_to_np_structured_array(item)
except Exception as exc:
logging.error("Failed to convert to structured array: %s", exc)
raise
dataset = {
'name': f'data_table_{item_idx}',
'data': structured_array,
'shape': structured_array.shape,
'dtype': type(structured_array)
}
file_dict['datasets'].append(dataset)
return file_dict
if __name__ == "__main__":
from src.hdf5_ops import save_file_dict_to_hdf5
from utils.g5505_utils import created_at
parser = argparse.ArgumentParser(description="Data ingestion process to HDF5 files.")
parser.add_argument('dst_file_path', type=str, help="Path to the target HDF5 file.")
parser.add_argument('src_file_path', type=str, help="Relative path to source file to be saved to target HDF5 file.")
parser.add_argument('dst_group_name', type=str, help="Group name '/instFolder/[category]/fileName' in the target HDF5 file.")
args = parser.parse_args()
hdf5_file_path = args.dst_file_path
src_file_path = args.src_file_path
dst_group_name = args.dst_group_name
default_mode = 'r+'
try:
idr_dict = read_structured_file_as_dict(src_file_path)
if not os.path.exists(hdf5_file_path):
default_mode = 'w'
print(f'Opening HDF5 file: {hdf5_file_path} in mode {default_mode}')
with h5py.File(hdf5_file_path, mode=default_mode, track_order=True) as hdf5_file_obj:
try:
if dst_group_name not in hdf5_file_obj:
hdf5_file_obj.create_group(dst_group_name)
hdf5_file_obj[dst_group_name].attrs['creation_date'] = created_at().encode('utf-8')
print(f'Created new group: {dst_group_name}')
else:
print(f'Group {dst_group_name} already exists. Proceeding with data transfer...')
except Exception as inst:
logging.error('Failed to create group %s in HDF5: %s', dst_group_name, inst)
save_file_dict_to_hdf5(hdf5_file_obj, dst_group_name, idr_dict)
print(f'Completed saving file dict with keys: {idr_dict.keys()}')
except Exception as e:
logging.error('File reader failed to process %s: %s', src_file_path, e)
print(f'File reader failed to process {src_file_path}. See logs for details.')

View File

@ -1,27 +1,10 @@
import sys
import os
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
import sys
import h5py
from igor2.binarywave import load as loadibw
import logging
import argparse
import utils.g5505_utils as utils
def read_xps_ibw_file_as_dict(filename):
"""
@ -66,7 +49,7 @@ def read_xps_ibw_file_as_dict(filename):
# Group name and attributes
file_dict['name'] = path_head
file_dict['attributes_dict'] = {'actris_level': 0, 'processing_date':utils.created_at(), 'processing_script' : os.path.relpath(thisFilePath,dimaPath)}
file_dict['attributes_dict'] = {}
# Convert notes of bytes class to string class and split string into a list of elements separated by '\r'.
notes_list = file_obj['wave']['note'].decode("utf-8").split('\r')
@ -102,11 +85,22 @@ def read_xps_ibw_file_as_dict(filename):
if __name__ == "__main__":
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
from src.hdf5_ops import save_file_dict_to_hdf5
from utils.g5505_utils import created_at
# Set up argument parsing
parser = argparse.ArgumentParser(description="Data ingestion process to HDF5 files.")
parser.add_argument('dst_file_path', type=str, help="Path to the target HDF5 file.")

View File

@ -78,13 +78,3 @@ instruments:
fileExtension: nas
fileReaderPath: instruments/readers/nasa_ames_reader.py
InstrumentDictionaryPath: instruments/dictionaries/EBAS.yaml
- instrumentFolderName: ACSM_TOFWARE
fileExtension: yaml,yml,json
fileReaderPath: instruments/readers/read_structured_file_as_dict.py
InstrumentDictionaryPath: instruments/dictionaries/EBAS.yaml
- instrumentFolderName: CEDOAS
fileExtension: txt
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/CEDOAS.yaml

View File

@ -40,32 +40,24 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1: Configure Your Data Integration Task\n",
"\n",
"1. Based on one of the example `.yaml` files found in the `input_files/` folder, define the input and output directory paths inside the file.\n",
"\n",
"2. When working with network drives, create `.env` file in the root of the `dima/` project with the following line:\n",
"\n",
" ```dotenv\n",
" NETWORK_MOUNT=//your-server/your-share\n",
" ```\n",
"3. Excecute Cell.\n",
"\n",
"**Note:** Ensure `.env` is listed in `.gitignore` and `.dockerignore`.\n",
"## Step 1: Specify data integration task through YAML configuration file\n",
"\n",
"* Create your configuration file (i.e., *.yaml file) adhering to the example yaml file in the input folder.\n",
"* Set up input directory and output directory paths and Excecute Cell.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"number, initials = 2, 'TBR' # Set as either 2, 'TBR' or 3, 'NG'\n",
"campaign_descriptor_path = f'../input_files/campaignDescriptor{number}_{initials}.yaml'\n",
"#output_filename_path = 'output_files/unified_file_smog_chamber_2024-04-07_UTC-OFST_+0200_NG.h5'\n",
"yaml_config_file_path = '../input_files/data_integr_config_file_TBR.yaml'\n",
"\n",
"print(campaign_descriptor_path)\n"
"#path_to_input_directory = 'output_files/kinetic_flowtube_study_2022-01-31_LuciaI'\n",
"#path_to_hdf5_file = hdf5_lib.create_hdf5_file_from_filesystem_path(path_to_input_directory)\n"
]
},
{
@ -74,9 +66,7 @@
"source": [
"## Step 2: Create an integrated HDF5 file of experimental campaign.\n",
"\n",
"* Excecute Cell. Here we run the function `integrate_data_sources` with input argument as the previously specified YAML config file.\n",
"\n",
" "
"* Excecute Cell. Here we run the function `integrate_data_sources` with input argument as the previously specified YAML config file."
]
},
{
@ -86,7 +76,7 @@
"outputs": [],
"source": [
"\n",
"hdf5_file_path = data_integration.run_pipeline(campaign_descriptor_path)"
"hdf5_file_path = data_integration.run_pipeline(yaml_config_file_path)"
]
},
{
@ -156,7 +146,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [

File diff suppressed because it is too large Load Diff

View File

@ -38,19 +38,12 @@ def _generate_datetime_dict(datetime_steps):
""" Generate the datetime augment dictionary from datetime steps. """
datetime_augment_dict = {}
for datetime_step in datetime_steps:
#tmp = datetime.strptime(datetime_step, '%Y-%m-%d %H-%M-%S')
datetime_augment_dict[datetime_step] = [
datetime_step.strftime('%Y-%m-%d'), datetime_step.strftime('%Y_%m_%d'),
datetime_step.strftime('%Y.%m.%d'), datetime_step.strftime('%Y%m%d')
datetime_step.strftime('%Y-%m-%d'), datetime_step.strftime('%Y_%m_%d'), datetime_step.strftime('%Y.%m.%d'), datetime_step.strftime('%Y%m%d')
]
return datetime_augment_dict
def _generate_output_path_fragment(filename_prefix, integration_mode, dataset_startdate, dataset_enddate, index=None):
"""Generate consistent directory or file name fragment based on mode."""
if integration_mode == 'collection':
return f'collection_{index}_{filename_prefix}_{dataset_enddate}'
else:
return f'{filename_prefix}_{dataset_enddate}'
def load_config_and_setup_logging(yaml_config_file_path, log_dir):
"""Load YAML configuration file, set up logging, and validate required keys and datetime_steps."""
@ -81,22 +74,6 @@ def load_config_and_setup_logging(yaml_config_file_path, log_dir):
if missing_keys:
raise KeyError(f"Missing required keys in YAML configuration: {missing_keys}")
# Look for all placeholders like ${VAR_NAME}
input_dir = config_dict['input_file_directory']
placeholders = re.findall(r'\$\{([^}^{]+)\}', input_dir)
success = utils.load_env_from_root()
print(f'Success : {success}')
for var in placeholders:
env_value = os.environ.get(var)
if env_value is None:
raise ValueError(f"Environment variable '{var}' is not set but used in the config.")
input_dir = input_dir.replace(f"${{{var}}}", env_value)
config_dict['input_file_directory'] = input_dir
# Check the instrument_datafolder required type and ensure the list is of at least length one.
if isinstance(config_dict['instrument_datafolder'], list) and not len(config_dict['instrument_datafolder'])>=1:
raise ValueError('Invalid value for key "instrument_datafolder". Expected a list of strings with at least one item.'
@ -212,6 +189,17 @@ def copy_subtree_and_create_hdf5(src, dst, select_dir_keywords, select_file_keyw
def run_pipeline(path_to_config_yamlFile, log_dir='logs/'):
"""Integrates data sources specified by the input configuration file into HDF5 files.
Parameters:
yaml_config_file_path (str): Path to the YAML configuration file.
log_dir (str): Directory to save the log file.
Returns:
list: List of Paths to the created HDF5 file(s).
"""
config_dict = load_config_and_setup_logging(path_to_config_yamlFile, log_dir)
path_to_input_dir = config_dict['input_file_directory']
@ -225,27 +213,22 @@ def run_pipeline(path_to_config_yamlFile, log_dir='logs/'):
dataset_startdate = config_dict['dataset_startdate']
dataset_enddate = config_dict['dataset_enddate']
integration_mode = config_dict.get('integration_mode', 'single_experiment')
filename_prefix = config_dict['filename_prefix']
# Determine mode and process accordingly
output_filename_path = []
campaign_name_template = lambda filename_prefix, suffix: '_'.join([filename_prefix, suffix])
date_str = f'{dataset_startdate}_{dataset_enddate}'
# Determine top-level campaign folder path
top_level_foldername = _generate_output_path_fragment(
filename_prefix, integration_mode, dataset_startdate, dataset_enddate, index=1
)
# Create path to new raw datafolder and standardize with forward slashes
path_to_rawdata_folder = os.path.join(
path_to_output_dir, top_level_foldername, ""
).replace(os.sep, '/')
path_to_output_dir, 'collection_' + campaign_name_template(config_dict['filename_prefix'], date_str), "").replace(os.sep, '/')
# Process individual datetime steps if available, regardless of mode
if config_dict.get('datetime_steps_dict', {}):
# Single experiment mode
for datetime_step, file_keywords in config_dict['datetime_steps_dict'].items():
single_date_str = datetime_step.strftime('%Y%m%d')
subfolder_name = f"{filename_prefix}_{single_date_str}"
subfolder_name = f"experimental_step_{single_date_str}"
path_to_rawdata_subfolder = os.path.join(path_to_rawdata_folder, subfolder_name, "")
date_str = datetime_step.strftime('%Y-%m-%d')
single_campaign_name = campaign_name_template(config_dict['filename_prefix'], date_str)
path_to_rawdata_subfolder = os.path.join(path_to_rawdata_folder, single_campaign_name, "")
path_to_integrated_stepwise_hdf5_file = copy_subtree_and_create_hdf5(
path_to_input_dir, path_to_rawdata_subfolder, select_dir_keywords,
@ -253,12 +236,11 @@ def run_pipeline(path_to_config_yamlFile, log_dir='logs/'):
output_filename_path.append(path_to_integrated_stepwise_hdf5_file)
# Collection mode post-processing
if integration_mode == 'collection':
# Collection mode processing if specified
if 'collection' in config_dict.get('integration_mode', 'single_experiment'):
path_to_filenames_dict = {path_to_rawdata_folder: [os.path.basename(path) for path in output_filename_path]} if output_filename_path else {}
hdf5_path = hdf5_lib.create_hdf5_file_from_filesystem_path(
path_to_rawdata_folder, path_to_filenames_dict, [], root_metadata_dict
)
#hdf5_path = hdf5_lib.create_hdf5_file_from_filesystem_path_new(path_to_rawdata_folder, path_to_filenames_dict, [], root_metadata_dict)
hdf5_path = hdf5_lib.create_hdf5_file_from_filesystem_path(path_to_rawdata_folder, path_to_filenames_dict, [], root_metadata_dict)
output_filename_path.append(hdf5_path)
else:
path_to_integrated_stepwise_hdf5_file = copy_subtree_and_create_hdf5(
@ -268,16 +250,24 @@ def run_pipeline(path_to_config_yamlFile, log_dir='logs/'):
return output_filename_path
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python data_integration.py <function_name> <function_args>")
sys.exit(1)
# Extract the function name from the command line arguments
function_name = sys.argv[1]
# Handle function execution based on the provided function name
if function_name == 'run':
if len(sys.argv) != 3:
print("Usage: python data_integration.py run <path_to_config_yamlFile>")
sys.exit(1)
# Extract path to configuration file, specifying the data integration task
path_to_config_yamlFile = sys.argv[2]
run_pipeline(path_to_config_yamlFile)

View File

@ -19,10 +19,17 @@ import pandas as pd
import numpy as np
import logging
import datetime
import h5py
import yaml
import json
import copy
#try:
# from dima.utils import g5505_utils as utils
# from dima.src import hdf5_writer as hdf5_lib
#except ModuleNotFoundError:
import utils.g5505_utils as utils
import src.hdf5_writer as hdf5_lib
@ -737,30 +744,10 @@ def save_file_dict_to_hdf5(h5file, group_name, file_dict):
try:
# Create group and add their attributes
filename = file_dict['name']
# Base filename to use as group name
base_filename = file_dict['name']
candidate_name = base_filename
replicate_index = 0
# Check for existing group and find a free name
parent_group = h5file.require_group(group_name)
while candidate_name in parent_group:
replicate_index += 1
candidate_name = f"{base_filename}_{replicate_index}"
group = h5file[group_name].create_group(name=candidate_name )
group = h5file[group_name].create_group(name=filename)
# Add group attributes
group.attrs.update(file_dict['attributes_dict'])
# Annotate replicate if renamed
if replicate_index > 0:
group.attrs['replicate_of'] = base_filename
group.attrs['replicate_info'] = (
f"Renamed due to existing group with same name. "
f"This is replicate #{replicate_index}."
)
# Add datasets to the just created group
for dataset in file_dict['datasets']:
dataset_obj = group.create_dataset(

View File

@ -100,20 +100,6 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
print(message)
logging.error(message)
else:
# Step 1: Preprocess all metadata.json files into a lookup dict
all_metadata_dict = {}
for dirpath, filenames in path_to_filenames_dict.items():
metadata_file = next((f for f in filenames if f.endswith('metadata.json')), None)
if metadata_file:
metadata_path = os.path.join(dirpath, metadata_file)
try:
with open(metadata_path, 'r') as metafile:
all_metadata_dict[dirpath] = json.load(metafile)
except json.JSONDecodeError:
logging.warning(f"Invalid JSON in metadata file: {metadata_path}")
all_metadata_dict[dirpath] = {}
with h5py.File(path_to_output_file, mode=mode, track_order=True) as h5file:
number_of_dirs = len(path_to_filenames_dict.keys())
@ -152,15 +138,22 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
stdout = inst
logging.error('Failed to create group %s into HDF5: %s', group_name, inst)
# Step 3: During ingestion, attach metadata per file
metadata_dict = all_metadata_dict.get(dirpath, {})
if 'data_lineage_metadata.json' in filtered_filenames_list:
idx = filtered_filenames_list.index('data_lineage_metadata.json')
data_lineage_file = filtered_filenames_list[idx]
try:
with open('/'.join([dirpath,data_lineage_file]),'r') as dlf:
data_lineage_dict = json.load(dlf)
filtered_filenames_list.pop(idx)
except json.JSONDecodeError:
data_lineage_dict = {} # Start fresh if file is invalid
else:
data_lineage_dict = {}
for filenumber, filename in enumerate(filtered_filenames_list):
# Skip any file that itself ends in metadata.json
if filename.endswith('metadata.json'):
continue
# hdf5 path to filename group
dest_group_name = f'{group_name}/{filename}'
source_file_path = os.path.join(dirpath,filename)
@ -170,10 +163,6 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
#file_dict = ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
file_dict = filereader_registry.select_file_reader(dest_group_name)(source_file_path)
# Attach per-file metadata if available
if filename in metadata_dict:
file_dict.get("attributes_dict",{}).update(metadata_dict[filename])
file_dict.get("attributes_dict",{}).update({'original_path' : dirpath})
stdout = hdf5_ops.save_file_dict_to_hdf5(dest_file_obj, group_name, file_dict)
else:
@ -281,21 +270,6 @@ def create_hdf5_file_from_filesystem_path_new(path_to_input_directory: str,
print(message)
logging.error(message)
else:
# Step 1: Preprocess all metadata.json files into a lookup dict
all_metadata_dict = {}
for dirpath, filenames in path_to_filenames_dict.items():
metadata_file = next((f for f in filenames if f.endswith('metadata.json')), None)
if metadata_file:
metadata_path = os.path.join(dirpath, metadata_file)
try:
with open(metadata_path, 'r') as metafile:
all_metadata_dict[dirpath] = json.load(metafile)
except json.JSONDecodeError:
logging.warning(f"Invalid JSON in metadata file: {metadata_path}")
all_metadata_dict[dirpath] = {}
with h5py.File(path_to_output_file, mode=mode, track_order=True) as h5file:
print('Created file')
@ -335,15 +309,8 @@ def create_hdf5_file_from_filesystem_path_new(path_to_input_directory: str,
# stdout = inst
# logging.error('Failed to create group %s into HDF5: %s', group_name, inst)
# Step 3: During ingestion, attach metadata per file
# TODO: pass this metadata fict to run_file_reader line 363
metadata_dict = all_metadata_dict.get(dirpath, {})
for filenumber, filename in enumerate(filtered_filenames_list):
if filename.endswith('metadata.json'):
continue
#file_ext = os.path.splitext(filename)[1]
#try:

View File

@ -1,7 +0,0 @@
exclude_paths:
containing :
- .ipynb_checkpoints
- .renku
- .git
# - params
- .Trash

View File

@ -1,18 +1,3 @@
import sys
import os
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
import pandas as pd
import os
import sys
@ -22,7 +7,7 @@ import logging
import numpy as np
import h5py
import re
import yaml
def setup_logging(log_dir, log_filename):
"""Sets up logging to a specified directory and file.
@ -217,49 +202,43 @@ def convert_string_to_bytes(input_list: list):
def convert_attrdict_to_np_structured_array(attr_value: dict):
"""
Converts a dictionary of attributes into a NumPy structured array with byte-encoded fields.
Handles UTF-8 encoding to avoid UnicodeEncodeError with non-ASCII characters.
Converts a dictionary of attributes into a numpy structured array for HDF5
compound type compatibility.
Each dictionary key is mapped to a field in the structured array, with the
data type (S) determined by the longest string representation of the values.
If the dictionary is empty, the function returns 'missing'.
Parameters
----------
attr_value : dict
Dictionary with scalar values (int, float, str).
Dictionary containing the attributes to be converted. Example:
attr_value = {
'name': 'Temperature',
'unit': 'Celsius',
'value': 23.5,
'timestamp': '2023-09-26 10:00'
}
Returns
-------
new_attr_value : ndarray
1-row structured array with fixed-size byte fields (dtype='S').
new_attr_value : ndarray or str
Numpy structured array with UTF-8 encoded fields. Returns 'missing' if
the input dictionary is empty.
"""
if not isinstance(attr_value, dict):
raise ValueError(f"Input must be a dictionary, got {type(attr_value)}")
if not attr_value:
return np.array(['missing'], dtype=[('value', 'S16')]) # placeholder
dtype = []
values_list = []
max_str_len = max(len(str(v)) for v in attr_value.values())
byte_len = max_str_len * 4 # UTF-8 worst-case
for key, val in attr_value.items():
if key == 'rename_as':
continue
if isinstance(val, (int, float, str)):
dtype.append((key, f'S{byte_len}'))
try:
encoded_val = str(val).encode('utf-8') # explicit UTF-8
values_list.append(encoded_val)
except UnicodeEncodeError as e:
logging.error(f"Failed to encode {key}={val}: {e}")
raise
else:
logging.warning(f"Skipping unsupported type for key {key}: {type(val)}")
max_length = max(len(str(attr_value[key])) for key in attr_value.keys())
for key in attr_value.keys():
if key != 'rename_as':
dtype.append((key, f'S{max_length}'))
values_list.append(attr_value[key])
if values_list:
return np.array([tuple(values_list)], dtype=dtype)
new_attr_value = np.array([tuple(values_list)], dtype=dtype)
else:
return np.array(['missing'], dtype=[('value', 'S16')])
new_attr_value = 'missing'
return new_attr_value
def infer_units(column_name):
@ -313,19 +292,6 @@ def copy_directory_with_contraints(input_dir_path, output_dir_path,
output_dir_path = os.path.normpath(output_dir_path)
select_dir_keywords = [keyword.replace('/',os.sep) for keyword in select_dir_keywords]
try:
with open(os.path.join(dimaPath, 'dima/utils/exclude_path_keywords.yaml'), 'r') as stream:
exclude_path_dict = yaml.safe_load(stream)
if isinstance(exclude_path_dict, dict):
exclude_path_keywords = exclude_path_dict.get('exclude_paths',{}).get('containing', [])
if not all(isinstance(keyword, str) for keyword in exclude_path_keywords):
exclude_path_keywords = []
else:
exclude_path_keywords = []
except (FileNotFoundError, yaml.YAMLError) as e:
print(f"Warning. Unable to load YAML file: {e}")
exclude_path_keywords = []
date = created_at('%Y_%m').replace(":", "-")
log_dir='logs/'
setup_logging(log_dir, f"copy_directory_with_contraints_{date}.log")
@ -336,7 +302,6 @@ def copy_directory_with_contraints(input_dir_path, output_dir_path,
def file_is_selected(filename):
return not select_file_keywords or any(keyword in filename for keyword in select_file_keywords)
# Exclude path keywords
# Collect paths of directories, which are directly connected to the root dir and match select_dir_keywords
@ -355,10 +320,6 @@ def copy_directory_with_contraints(input_dir_path, output_dir_path,
for dirpath, _, filenames in os.walk(subpath,topdown=False):
# Exclude any dirpath containing a keyword in exclude_path_keywords
if any(excluded in dirpath for excluded in exclude_path_keywords):
continue
# Ensure composite keywords e.g., <keyword>/<keyword> are contained in the path
if select_dir_keywords and not any([keyword in dirpath for keyword in select_dir_keywords]):
continue
@ -451,56 +412,3 @@ def is_structured_array(attr_val):
return True if attr_val.dtype.names is not None else False
else:
return False
import os
from pathlib import Path
def find_env_file(start_path=None):
"""
Find .env file by walking up the directory tree.
Looks for .env in current dir, then parent dirs up to filesystem root.
Args:
start_path: Starting directory (defaults to current working directory)
Returns:
Path to .env file or None if not found
"""
if start_path is None:
start_path = os.getcwd()
current_path = Path(start_path).resolve()
# Walk up the directory tree
for path in [current_path] + list(current_path.parents):
env_file = path / '.env'
if env_file.exists():
return str(env_file)
return None
import os
def load_env_from_root():
"""Load environment variables from .env file found in project root or parent."""
env_file = find_env_file()
if env_file:
try:
from dotenv import load_dotenv
load_dotenv(env_file, override=True) # override existing values
print(f"Loaded .env from: {env_file}")
return True
except ImportError:
with open(env_file, 'r') as f:
for line in f:
line = line.strip()
if line and not line.startswith('#') and '=' in line:
key, value = line.split('=', 1)
os.environ[key.strip()] = value.strip()
print(f"Manually loaded .env from: {env_file}")
return True
else:
print("No .env file found in project hierarchy")
return False