diff --git a/src/g5505_file_reader.py b/src/g5505_file_reader.py index a00a817..e237eb2 100644 --- a/src/g5505_file_reader.py +++ b/src/g5505_file_reader.py @@ -165,7 +165,7 @@ def read_txt_files_as_dict(filename : str , work_with_copy : bool = True ): if table_header in line.decode(file_encoding): list_of_substrings = line.decode(file_encoding).split(separator) data_start = True - column_names = [str(i)+'_'+name for i, name in enumerate(list_of_substrings)] + column_names = [str(i)+'_'+name.strip() for i, name in enumerate(list_of_substrings)] #column_names = [] #for i, name in enumerate(list_of_substrings): # column_names.append(str(i)+'_'+name) @@ -270,29 +270,19 @@ def read_txt_files_as_dict(filename : str , work_with_copy : bool = True ): except ValueError as err: print(err) - #dataset = {} - #numerical_variables= [item.encode("utf-8") for item in numerical_variables] - #dataset['name'] = 'numerical_variable_names' - #dataset['data'] = np.array(numerical_variables).reshape((1,len(numerical_variables))) - #dataset['shape'] = dataset['data'].shape - #dataset['dtype'] = type(dataset['data']) - #file_dict['datasets'].append(dataset) - + if categorical_variables: dataset = {} dataset['name'] = 'table_categorical_variables' dataset['data'] = dataframe_to_np_structured_array(df_categorical_attrs) #df_categorical_attrs.loc[:,categorical_variables].to_numpy() dataset['shape'] = dataset['data'].shape dataset['dtype'] = type(dataset['data']) - file_dict['datasets'].append(dataset) + if 'timestamps' in categorical_variables: + dataset['attributes'] = {'timestamps': metadata.parse_attribute({'unit':'YYYY-MM-DD HH:MM:SS.ffffff'})} + file_dict['datasets'].append(dataset) + + - # dataset = {} - # categorical_variables = [item.encode("utf-8") for item in categorical_variables] - # dataset['name'] = 'categorial_variable_names' - # dataset['data'] = np.array(categorical_variables).reshape((1,len(categorical_variables))) - # dataset['shape'] = dataset['data'].shape - # dataset['dtype'] = type(dataset['data']) - # file_dict['datasets'].append(dataset) except: return {}