Modify utils/g5505_utils.py. Implement handling unicode character errors.

This commit is contained in:
2025-06-19 20:49:14 +02:00
parent 617a923fb6
commit 8e6ee49188

View File

@ -217,49 +217,49 @@ def convert_string_to_bytes(input_list: list):
def convert_attrdict_to_np_structured_array(attr_value: dict):
"""
Converts a dictionary of attributes into a numpy structured array for HDF5
compound type compatibility.
Each dictionary key is mapped to a field in the structured array, with the
data type (S) determined by the longest string representation of the values.
If the dictionary is empty, the function returns 'missing'.
Converts a dictionary of attributes into a NumPy structured array with byte-encoded fields.
Handles UTF-8 encoding to avoid UnicodeEncodeError with non-ASCII characters.
Parameters
----------
attr_value : dict
Dictionary containing the attributes to be converted. Example:
attr_value = {
'name': 'Temperature',
'unit': 'Celsius',
'value': 23.5,
'timestamp': '2023-09-26 10:00'
}
Dictionary with scalar values (int, float, str).
Returns
-------
new_attr_value : ndarray
Numpy structured array with UTF-8 encoded fields. Returns np.array(['missing'], dtype=[str]) if
the input dictionary is empty.
1-row structured array with fixed-size byte fields (dtype='S').
"""
if not isinstance(attr_value, dict):
raise ValueError(f'Input paremeter {attr_value} must be a dictionary of scalar values.')
raise ValueError(f"Input must be a dictionary, got {type(attr_value)}")
if not attr_value:
return np.array(['missing'], dtype=[('value', 'S16')]) # placeholder
dtype = []
values_list = []
max_length = max(len(str(attr_value[key])) for key in attr_value.keys())
for key, val in attr_value.items():
# Verify if 'rename_as' is still used in metadata revision
if key != 'rename_as' and isinstance(val, (int, float, str)):
dtype.append((key, f'S{max_length}'))
values_list.append(attr_value[key])
else:
print(f"Skipping unsupported type for key {key}: {type(val)}")
if values_list:
new_attr_value = np.array([tuple(values_list)], dtype=dtype)
else:
new_attr_value = np.array(['missing'], dtype=[str])
return new_attr_value
max_str_len = max(len(str(v)) for v in attr_value.values())
byte_len = max_str_len * 4 # UTF-8 worst-case
for key, val in attr_value.items():
if key == 'rename_as':
continue
if isinstance(val, (int, float, str)):
dtype.append((key, f'S{byte_len}'))
try:
encoded_val = str(val).encode('utf-8') # explicit UTF-8
values_list.append(encoded_val)
except UnicodeEncodeError as e:
logging.error(f"Failed to encode {key}={val}: {e}")
raise
else:
logging.warning(f"Skipping unsupported type for key {key}: {type(val)}")
if values_list:
return np.array([tuple(values_list)], dtype=dtype)
else:
return np.array(['missing'], dtype=[('value', 'S16')])
def infer_units(column_name):