Major code refactoring and simplifications to enhance modularity. Included a command line interface.
This commit is contained in:
@ -3,21 +3,29 @@ import os
|
||||
root_dir = os.path.abspath(os.curdir)
|
||||
sys.path.append(root_dir)
|
||||
|
||||
import src.hdf5_writer as hdf5_lib
|
||||
import utils.g5505_utils as utils
|
||||
import yaml
|
||||
|
||||
|
||||
import yaml
|
||||
import logging
|
||||
from datetime import datetime
|
||||
# Importing chain class from itertools
|
||||
from itertools import chain
|
||||
|
||||
# Import DIMA modules
|
||||
import src.hdf5_writer as hdf5_lib
|
||||
import utils.g5505_utils as utils
|
||||
from instruments.readers import filereader_registry
|
||||
|
||||
allowed_file_extensions = filereader_registry.file_extensions
|
||||
|
||||
|
||||
from datetime import datetime
|
||||
def _generate_datetime_dict(datetime_steps):
|
||||
""" Generate the datetime augment dictionary from datetime steps. """
|
||||
datetime_augment_dict = {}
|
||||
for datetime_step in datetime_steps:
|
||||
#tmp = datetime.strptime(datetime_step, '%Y-%m-%d %H-%M-%S')
|
||||
datetime_augment_dict[datetime_step] = [
|
||||
datetime_step.strftime('%Y-%m-%d'), datetime_step.strftime('%Y_%m_%d'), datetime_step.strftime('%Y.%m.%d'), datetime_step.strftime('%Y%m%d')
|
||||
]
|
||||
return datetime_augment_dict
|
||||
|
||||
def load_config_and_setup_logging(yaml_config_file_path, log_dir):
|
||||
"""Load YAML configuration file, set up logging, and validate required keys and datetime_steps."""
|
||||
@ -50,15 +58,13 @@ def load_config_and_setup_logging(yaml_config_file_path, log_dir):
|
||||
raise KeyError(f"Missing required keys in YAML configuration: {missing_keys}")
|
||||
|
||||
# Validate integration_mode
|
||||
integration_mode = config_dict.get('integration_mode', 'collection') # Default to 'collection'
|
||||
integration_mode = config_dict.get('integration_mode', 'N/A') # Default to 'collection'
|
||||
if integration_mode not in supported_integration_modes:
|
||||
raise ValueError(f"Unsupported integration_mode '{integration_mode}'. Supported modes are {supported_integration_modes}")
|
||||
raise RuntimeWarning(
|
||||
f"Unsupported integration_mode '{integration_mode}'. Supported modes are {supported_integration_modes}. Setting '{integration_mode}' to 'single_experiment'."
|
||||
)
|
||||
|
||||
|
||||
# Get dataset start and end dates (optional)
|
||||
dataset_startdate = config_dict.get('dataset_startdate')
|
||||
dataset_enddate = config_dict.get('dataset_enddate')
|
||||
|
||||
# Validate datetime_steps format if it exists
|
||||
if 'datetime_steps' in config_dict:
|
||||
datetime_steps = config_dict['datetime_steps']
|
||||
@ -74,34 +80,15 @@ def load_config_and_setup_logging(yaml_config_file_path, log_dir):
|
||||
config_dict['datetime_steps'][step_idx] = datetime.strptime(step, expected_format)
|
||||
except ValueError:
|
||||
raise ValueError(f"Invalid datetime format for '{step}'. Expected format: {expected_format}")
|
||||
|
||||
# Set default dates from datetime_steps if not provided
|
||||
if not dataset_startdate:
|
||||
dataset_startdate = min(config_dict['datetime_steps']).strftime('%Y-%m-%d') # Earliest datetime step
|
||||
|
||||
if not dataset_enddate:
|
||||
dataset_enddate = max(config_dict['datetime_steps']).strftime('%Y-%m-%d') # Latest datetime step
|
||||
# Augment datatime_steps list as a dictionary. This to speed up single-experiment file generation
|
||||
config_dict['datetime_steps_dict'] = _generate_datetime_dict(datetime_steps)
|
||||
else:
|
||||
# If datetime_steps is not present, set the integration mode to 'collection'
|
||||
logging.info("datetime_steps missing, setting integration_mode to 'collection'.")
|
||||
config_dict['integration_mode'] = 'collection'
|
||||
|
||||
# Set sensible defaults using the current date
|
||||
current_date = datetime.now().strftime('%Y-%m-%d')
|
||||
if not dataset_startdate:
|
||||
dataset_startdate = current_date
|
||||
if not dataset_enddate:
|
||||
dataset_enddate = current_date
|
||||
|
||||
config_dict['expected_datetime_format'] = '%Y-%m-%d %H-%M-%S'
|
||||
|
||||
# Add dataset dates to config for use later
|
||||
config_dict['dataset_startdate'] = dataset_startdate
|
||||
config_dict['dataset_enddate'] = dataset_enddate
|
||||
|
||||
# Validate filename_format if defined
|
||||
if 'filename_format' in config_dict:
|
||||
|
||||
if not isinstance(config_dict['filename_format'], str):
|
||||
raise ValueError(f'"Specified filename_format needs to be of String type" ')
|
||||
|
||||
@ -120,22 +107,50 @@ def load_config_and_setup_logging(yaml_config_file_path, log_dir):
|
||||
else:
|
||||
config_dict['filename_format'] = None
|
||||
|
||||
# Compute complementary metadata elements
|
||||
|
||||
# Create output filename prefix
|
||||
if not config_dict['filename_format']: # default behavior
|
||||
config_dict['filename_prefix'] = '_'.join([config_dict[key] for key in ['experiment', 'contact']])
|
||||
else:
|
||||
config_dict['filename_prefix'] = '_'.join([config_dict[key] for key in config_dict['filename_format'].split(sep=',')])
|
||||
|
||||
# Set default dates from datetime_steps if not provided
|
||||
current_date = datetime.now().strftime('%Y-%m-%d')
|
||||
dates = config_dict.get('datetime_steps',[])
|
||||
if not config_dict.get('dataset_startdate'):
|
||||
config_dict['dataset_startdate'] = min(config_dict['datetime_steps']).strftime('%Y-%m-%d') if dates else current_date # Earliest datetime step
|
||||
|
||||
if not config_dict.get('dataset_enddate'):
|
||||
config_dict['dataset_enddate'] = max(config_dict['datetime_steps']).strftime('%Y-%m-%d') if dates else current_date # Latest datetime step
|
||||
|
||||
config_dict['expected_datetime_format'] = '%Y-%m-%d %H-%M-%S'
|
||||
|
||||
return config_dict
|
||||
|
||||
|
||||
def generate_datetime_dict(datetime_steps):
|
||||
""" Generate the datetime augment dictionary from datetime steps. """
|
||||
datetime_augment_dict = {}
|
||||
for datetime_step in datetime_steps:
|
||||
#tmp = datetime.strptime(datetime_step, '%Y-%m-%d %H-%M-%S')
|
||||
datetime_augment_dict[datetime_step] = [
|
||||
datetime_step.strftime('%Y-%m-%d'), datetime_step.strftime('%Y_%m_%d'), datetime_step.strftime('%Y.%m.%d'), datetime_step.strftime('%Y%m%d')
|
||||
]
|
||||
return datetime_augment_dict
|
||||
def copy_subtree_and_create_hdf5(src, dst, select_dir_keywords, select_file_keywords, allowed_file_extensions, root_metadata_dict):
|
||||
|
||||
def integrate_data_sources(yaml_config_file_path, log_dir='logs/'):
|
||||
"""Helper function to copy directory with constraints and create HDF5."""
|
||||
src = src.replace(os.sep,'/')
|
||||
dst = dst.replace(os.sep,'/')
|
||||
|
||||
logging.info("Creating constrained copy of the experimental campaign folder %s at: %s", src, dst)
|
||||
|
||||
""" Integrates data sources specified by the input configuration file into HDF5 files.
|
||||
path_to_files_dict = utils.copy_directory_with_contraints(src, dst, select_dir_keywords, select_file_keywords, allowed_file_extensions)
|
||||
logging.info("Finished creating a copy of the experimental campaign folder tree at: %s", dst)
|
||||
|
||||
|
||||
logging.info("Creating HDF5 file at: %s", dst)
|
||||
hdf5_path = hdf5_lib.create_hdf5_file_from_filesystem_path(dst, path_to_files_dict, select_dir_keywords, root_metadata_dict)
|
||||
logging.info("Completed creation of HDF5 file %s at: %s", hdf5_path, dst)
|
||||
|
||||
return hdf5_path
|
||||
|
||||
|
||||
def run_pipeline(path_to_config_yamlFile, log_dir='logs/'):
|
||||
|
||||
"""Integrates data sources specified by the input configuration file into HDF5 files.
|
||||
|
||||
Parameters:
|
||||
yaml_config_file_path (str): Path to the YAML configuration file.
|
||||
@ -145,124 +160,73 @@ def integrate_data_sources(yaml_config_file_path, log_dir='logs/'):
|
||||
list: List of Paths to the created HDF5 file(s).
|
||||
"""
|
||||
|
||||
config_dict = load_config_and_setup_logging(yaml_config_file_path, log_dir)
|
||||
config_dict = load_config_and_setup_logging(path_to_config_yamlFile, log_dir)
|
||||
|
||||
exp_campaign_name = config_dict['experiment']
|
||||
initials = config_dict['contact']
|
||||
path_to_input_dir = config_dict['input_file_directory']
|
||||
path_to_output_dir = config_dict['output_file_directory']
|
||||
select_dir_keywords = config_dict['instrument_datafolder']
|
||||
root_metadata_dict = {
|
||||
'project' : config_dict['project'],
|
||||
'experiment' : config_dict['experiment'],
|
||||
'contact' : config_dict['contact'],
|
||||
'actris_level': config_dict['actris_level']
|
||||
}
|
||||
|
||||
# Get dataset start and end dates.
|
||||
# Define root folder metadata dictionary
|
||||
root_metadata_dict = {key : config_dict[key] for key in ['project', 'experiment', 'contact', 'actris_level']}
|
||||
|
||||
# Get dataset start and end dates
|
||||
dataset_startdate = config_dict['dataset_startdate']
|
||||
dataset_enddate = config_dict['dataset_enddate']
|
||||
|
||||
# Handle datetime_steps and integration mode
|
||||
datetime_augment_dict = {}
|
||||
select_file_keywords = []
|
||||
|
||||
if 'datetime_steps' in config_dict and config_dict['datetime_steps']:
|
||||
# We augment each datetime step with various datetime formats to compensate for filenaming inconsistencies
|
||||
datetime_augment_dict = generate_datetime_dict(config_dict['datetime_steps'])
|
||||
|
||||
# Create flattened datetime list of datetime object file keywords
|
||||
select_file_keywords = list(chain.from_iterable(datetime_augment_dict.values()))
|
||||
|
||||
|
||||
if not config_dict['filename_format']: # if config_dict['filename_format'] == None
|
||||
filename_parts = [exp_campaign_name,initials]
|
||||
else:
|
||||
filename_parts = [config_dict[key] for key in config_dict['filename_format'].split(',')]
|
||||
|
||||
# Determine mode and process accordingly
|
||||
output_filename_path = []
|
||||
|
||||
campaign_name_template = lambda name, date, initials : f"{name}_{date}_{initials}"
|
||||
campaign_name_template = lambda filename_parts, suffix : '_'.join(filename_parts+[suffix])
|
||||
|
||||
campaign_name_template = lambda filename_prefix, suffix: '_'.join([filename_prefix, suffix])
|
||||
date_str = f'{dataset_startdate}_{dataset_enddate}'
|
||||
# Create path to new rawdata subfolder and standardize it with forward-slashes as required by pipeline
|
||||
path_to_rawdata_folder = os.path.join(path_to_output_dir, 'collection_' + campaign_name_template(filename_parts, date_str),"").replace(os.sep,'/')
|
||||
|
||||
if datetime_augment_dict:
|
||||
|
||||
# Create path to new raw datafolder and standardize with forward slashes
|
||||
path_to_rawdata_folder = os.path.join(
|
||||
path_to_output_dir, 'collection_' + campaign_name_template(config_dict['filename_prefix'], date_str), "").replace(os.sep, '/')
|
||||
|
||||
# Process individual datetime steps if available, regardless of mode
|
||||
if config_dict.get('datetime_steps_dict', {}):
|
||||
# Single experiment mode
|
||||
for datetime_step in datetime_augment_dict.keys():
|
||||
|
||||
for datetime_step, file_keywords in config_dict['datetime_steps_dict'].items():
|
||||
date_str = datetime_step.strftime('%Y-%m-%d')
|
||||
select_file_keywords = datetime_augment_dict[datetime_step]
|
||||
single_campaign_name = campaign_name_template(config_dict['filename_prefix'], date_str)
|
||||
path_to_rawdata_subfolder = os.path.join(path_to_rawdata_folder, single_campaign_name, "")
|
||||
|
||||
single_campaign_name = campaign_name_template(filename_parts, date_str) #campaign_name_template(exp_campaign_name, initials, date_str)
|
||||
|
||||
# Create path to new rawdata subfolder and standardize it with forward slashes as required by pipeline
|
||||
path_to_rawdata_subfolder = os.path.join(path_to_rawdata_folder, single_campaign_name,"").replace(os.sep,'/')
|
||||
|
||||
# Run two step data integration pipeline on specified experimental campaign data collection
|
||||
path_to_integrated_stepwise_hdf5_file = dima_pipeline(path_to_input_dir,
|
||||
path_to_rawdata_subfolder ,
|
||||
select_dir_keywords,
|
||||
select_file_keywords,
|
||||
root_metadata_dict)
|
||||
path_to_integrated_stepwise_hdf5_file = copy_subtree_and_create_hdf5(
|
||||
path_to_input_dir, path_to_rawdata_subfolder, select_dir_keywords,
|
||||
file_keywords, allowed_file_extensions, root_metadata_dict)
|
||||
|
||||
output_filename_path.append(path_to_integrated_stepwise_hdf5_file)
|
||||
|
||||
# Collection mode processing if specified
|
||||
if 'collection' in config_dict.get('integration_mode', 'single_experiment'):
|
||||
#date_str = f'{dataset_startdate}_{dataset_enddate}'
|
||||
path_to_filenames_dict = {}
|
||||
path_to_filenames_dict[path_to_rawdata_folder] = []
|
||||
for path in output_filename_path:
|
||||
path_to_file, filename = os.path.split(path) # path_to_file should be same as path_to_rawdata_folder
|
||||
path_to_filenames_dict[path_to_rawdata_folder].append(filename)
|
||||
path_to_filenames_dict = {path_to_rawdata_folder: [os.path.basename(path) for path in output_filename_path]} if output_filename_path else {}
|
||||
hdf5_path = hdf5_lib.create_hdf5_file_from_filesystem_path(path_to_rawdata_folder, path_to_filenames_dict, [], root_metadata_dict)
|
||||
output_filename_path.append(hdf5_path)
|
||||
else:
|
||||
path_to_integrated_stepwise_hdf5_file = copy_subtree_and_create_hdf5(
|
||||
path_to_input_dir, path_to_rawdata_folder, select_dir_keywords, [],
|
||||
allowed_file_extensions, root_metadata_dict)
|
||||
output_filename_path.append(path_to_integrated_stepwise_hdf5_file)
|
||||
|
||||
path_to_integrated_hdf5_file = hdf5_lib.create_hdf5_file_from_filesystem_path(path_to_rawdata_folder,
|
||||
path_to_filenames_dict,
|
||||
[],
|
||||
root_metadata_dict)
|
||||
|
||||
output_filename_path.append(path_to_integrated_hdf5_file)
|
||||
|
||||
else: # collection
|
||||
path_to_integrated_hdf5_file = dima_pipeline(path_to_input_dir,
|
||||
path_to_rawdata_folder,
|
||||
select_dir_keywords,
|
||||
select_file_keywords,
|
||||
root_metadata_dict)
|
||||
|
||||
|
||||
output_filename_path.append(path_to_integrated_hdf5_file)
|
||||
|
||||
return output_filename_path
|
||||
|
||||
def dima_pipeline(path_to_input_dir, path_to_rawdata_folder, select_dir_keywords, select_file_keywords, root_metadata_dict = {}):
|
||||
# Possibly replace below line with os.path.join(path_to_rawdata_folder,'..')
|
||||
path_to_output_dir = os.path.join(path_to_rawdata_folder,'..')
|
||||
path_to_output_dir = os.path.normpath(path_to_output_dir)
|
||||
|
||||
logging.info("Creating copy of the experimental campaign folder at: %s", path_to_output_dir)
|
||||
|
||||
# Step 1: Search through input directory and make a copy in the output directory that complies with naming constraints
|
||||
path_to_input_dir_filenames_dict = utils.copy_directory_with_contraints(path_to_input_dir,
|
||||
path_to_rawdata_folder,
|
||||
select_dir_keywords,
|
||||
select_file_keywords,
|
||||
allowed_file_extensions)
|
||||
logging.info("Finished creating a copy of the experimental campaign folder at: %s", path_to_output_dir)
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Step 2: Create HDF5 file
|
||||
logging.info("Creating HDF5 file at: %s", path_to_output_dir)
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python data_integration.py <function_name> <function_args>")
|
||||
sys.exit(1)
|
||||
|
||||
# Extract the function name from the command line arguments
|
||||
function_name = sys.argv[1]
|
||||
|
||||
# Handle function execution based on the provided function name
|
||||
if function_name == 'run':
|
||||
|
||||
if len(sys.argv) != 2:
|
||||
print("Usage: python data_integration.py run <path_to_config_yamlFile>")
|
||||
sys.exit(1)
|
||||
# Extract path to configuration file, specifying the data integration task
|
||||
path_to_config_yamlFile = sys.argv[2]
|
||||
run_pipeline(path_to_config_yamlFile)
|
||||
|
||||
path_to_integrated_hdf5_file = hdf5_lib.create_hdf5_file_from_filesystem_path(path_to_rawdata_folder,
|
||||
path_to_input_dir_filenames_dict,
|
||||
select_dir_keywords,
|
||||
root_metadata_dict)
|
||||
logging.info("Completed creation of HDF5 file %s for the specified experimental campaign at: %s",
|
||||
path_to_integrated_hdf5_file, path_to_output_dir)
|
||||
|
||||
return path_to_integrated_hdf5_file
|
||||
|
||||
|
Reference in New Issue
Block a user