Merge branch 'feature/DB_for_FileReader_Repo' into 'main'

Restructuring of file reader system to process multi-instrument data folders.

See merge request 5505-public/dima!3
This commit is contained in:
2025-02-25 10:48:59 +01:00
17 changed files with 815 additions and 278 deletions

View File

@ -119,3 +119,20 @@ table_header:
description: Sample source description: Sample source
units: unspecified units: unspecified
rename_as: sample_source rename_as: sample_source
# NO2 additional vocabulary terms
CHOCHO (ppb):
description: CHOCHO concentration
units: ppb
rename_as: chocho_concentration_ppb
CHOCHO Uncertainty (ppb):
description: Uncertainty in CHOCHO concentration
units: ppb
rename_as: chocho_uncertainty_ppb
10_#ICEDOAS iter.:
description: Number of ICEDOAS iterations
units: unspecified
rename_as: icedoas_iterations

View File

@ -1,113 +0,0 @@
table_header:
Start Date/Time (UTC):
description: Start date and time of the measurement in UTC
units: YYYY-MM-DD HH:MM:SS
rename_as: start_datetime_utc
Duration (s):
description: Duration of the measurement in seconds
units: seconds
rename_as: duration_seconds
NO2 (ppb):
description: NO2 concentration
units: ppb
rename_as: no2_concentration_ppb
NO2 Uncertainty (ppb):
description: Uncertainty in NO2 concentration
units: ppb
rename_as: no2_uncertainty_ppb
H2O (ppb):
description: H2O concentration
units: ppb
rename_as: h2o_concentration_ppb
H2O Uncertainty (ppb):
description: Uncertainty in H2O concentration
units: ppb
rename_as: h2o_uncertainty_ppb
CHOCHO (ppb):
description: CHOCHO concentration
units: ppb
rename_as: chocho_concentration_ppb
CHOCHO Uncertainty (ppb):
description: Uncertainty in CHOCHO concentration
units: ppb
rename_as: chocho_uncertainty_ppb
File Number:
description: File number
units: unspecified
rename_as: file_number
Light Intensity:
description: Light intensity
units: unspecified
rename_as: light_intensity
10_#ICEDOAS iter.:
description: Number of ICEDOAS iterations
units: unspecified
rename_as: icedoas_iterations
Cell Pressure:
description: Cell pressure
units: unspecified
rename_as: cell_pressure
Ambient Pressure:
description: Ambient pressure
units: unspecified
rename_as: ambient_pressure
Cell Temp:
description: Cell temperature
units: unspecified
rename_as: cell_temperature
Spec Temp:
description: Spectrometer temperature
units: unspecified
rename_as: spec_temperature
Lat:
description: Latitude
units: unspecified
rename_as: latitude
Lon:
description: Longitude
units: unspecified
rename_as: longitude
Height:
description: Height
units: unspecified
rename_as: height
Speed:
description: Speed
units: unspecified
rename_as: speed
GPSQuality:
description: GPS quality
units: unspecified
rename_as: gps_quality
0-Air Ref. Time:
description: 0-air reference time
units: unspecified
rename_as: zero_air_ref_time
0-Air Ref. Duration:
description: 0-air reference duration
units: unspecified
rename_as: zero_air_ref_duration
0-Air Ref. File Number:
description: 0-air reference file number
units: unspecified
rename_as: zero_air_ref_file_number
0-Air Ref. Intensity:
description: 0-air reference intensity
units: unspecified
rename_as: zero_air_ref_intensity
0-Air Ref. Rel Intensity:
description: 0-air reference relative intensity
units: unspecified
rename_as: zero_air_ref_relative_intensity
0-Air Ref. Intensity valid:
description: 0-air reference intensity validity
units: unspecified
rename_as: zero_air_ref_intensity_valid
MeasMode:
description: Measurement mode
units: unspecified
rename_as: measurement_mode
SampleSource:
description: Sample source
units: unspecified
rename_as: sample_source

View File

@ -1,11 +1,20 @@
import os import os
import sys import sys
import subprocess
import yaml
#root_dir = os.path.abspath(os.curdir) #root_dir = os.path.abspath(os.curdir)
#sys.path.append(root_dir) #sys.path.append(root_dir)
#try:
# from dima.instruments.readers.xps_ibw_reader import read_xps_ibw_file_as_dict
# from dima.instruments.readers.g5505_text_reader import read_txt_files_as_dict
#except ModuleNotFoundError as e:
# print(e)
from instruments.readers.xps_ibw_reader import read_xps_ibw_file_as_dict from instruments.readers.xps_ibw_reader import read_xps_ibw_file_as_dict
from instruments.readers.g5505_text_reader import read_txt_files_as_dict from instruments.readers.g5505_text_reader import read_txt_files_as_dict
from instruments.readers.acsm_tofware_reader import read_acsm_files_as_dict
from instruments.readers.acsm_flag_reader import read_jsonflag_as_dict
file_extensions = ['.ibw','.txt','.dat','.h5','.TXT','.csv','.pkl','.json','.yaml'] file_extensions = ['.ibw','.txt','.dat','.h5','.TXT','.csv','.pkl','.json','.yaml']
@ -15,24 +24,37 @@ default_instruments_dir = None # or provide an absolute path
file_readers = { file_readers = {
'ibw': lambda a1: read_xps_ibw_file_as_dict(a1), 'ibw': lambda a1: read_xps_ibw_file_as_dict(a1),
'txt': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False), 'txt': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
'TXT': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
'dat': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False), 'dat': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
'csv': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False) 'csv': lambda a1: read_txt_files_as_dict(a1, instruments_dir=default_instruments_dir, work_with_copy=False),
} 'ACSM_TOFWARE_txt' : lambda x: read_acsm_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False),
'ACSM_TOFWARE_csv' : lambda x: read_acsm_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False),
'ACSM_TOFWARE_flags_json' : lambda x: read_jsonflag_as_dict(x)}
# Add new "instrument reader (Data flagging app data)" REGISTRY_FILE = "registry.yaml" #os.path.join(os.path.dirname(__file__), "registry.yaml")
from instruments.readers.acsm_tofware_reader import read_acsm_files_as_dict def load_registry():
file_extensions.append('.txt')
file_readers.update({'ACSM_TOFWARE_txt' : lambda x: read_acsm_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False)})
file_extensions.append('.csv') module_dir = os.path.dirname(__file__)
file_readers.update({'ACSM_TOFWARE_csv' : lambda x: read_acsm_files_as_dict(x, instruments_dir=default_instruments_dir, work_with_copy=False)}) instruments_dir = os.path.join(module_dir, '..')
from instruments.readers.flag_reader import read_jsonflag_as_dict # Normalize the path (resolves any '..' in the path)
file_extensions.append('.json') registry_path = os.path.abspath(os.path.join(module_dir,REGISTRY_FILE))
file_readers.update({'ACSM_TOFWARE_flags_json' : lambda x: read_jsonflag_as_dict(x)})
with open(registry_path, "r") as file:
return yaml.safe_load(file)["instruments"]
def find_reader(instrument_folder, file_extension):
registry = load_registry()
for entry in registry:
if entry["instrumentFolderName"] == instrument_folder and entry["fileExtension"] == file_extension:
return entry["fileReaderPath"], entry["InstrumentDictionaryPath"]
return None, None # Not found
def compute_filereader_key_from_path(hdf5_file_path): def compute_filereader_key_from_path(hdf5_file_path):
"""Constructs the key 'instrumentname_ext' based on hdf5_file_path, structured as """Constructs the key 'instrumentname_ext' based on hdf5_file_path, structured as
/instrumentname/to/filename.ext, which access the file reader that should be used to read such a file. /instrumentname/to/filename.ext, which access the file reader that should be used to read such a file.
@ -52,6 +74,7 @@ def compute_filereader_key_from_path(hdf5_file_path):
# Extract the filename and its extension # Extract the filename and its extension
filename, file_extension = os.path.splitext(parts[-1]) filename, file_extension = os.path.splitext(parts[-1])
file_extension = file_extension.lower()
# Extract the first directory directly under the root directory '/' in the hdf5 file # Extract the first directory directly under the root directory '/' in the hdf5 file
subfolder_name = parts[0] if len(parts) > 1 else "" subfolder_name = parts[0] if len(parts) > 1 else ""
@ -76,4 +99,45 @@ def select_file_reader(path):
return file_readers[extension] return file_readers[extension]
# Default case if no reader is found # Default case if no reader is found
return lambda x : None return lambda x : None
def run_reader(hdf5_file_path, src_file_path, dst_group_name):
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
projectPath = os.path.normpath(os.path.join(thisFilePath, "..",'..')) # Move up to project root
#
full_string, file_extension = compute_filereader_key_from_path(dst_group_name)
full_string_parts = full_string.split("_")
full_string_parts.remove(file_extension)
instrument_folder = '_'.join(full_string_parts)
reader_path, dict_path = find_reader(instrument_folder, file_extension)
if reader_path:
reader_path = os.path.normpath(os.path.join(projectPath, reader_path))
if not os.path.exists(reader_path):
raise FileNotFoundError(f"File reader {reader_path} not found for key {full_string}. Verify the reader is properly referenced in registry.yaml.")
else:
print(f'Attempting to run {reader_path}')
command = ["python", reader_path, hdf5_file_path, src_file_path, instrument_folder]
#if dict_path:
# args.append(dict_path)
print(f"Running: {command}")
output = subprocess.run(command, capture_output=True)#, check=True)
print('Subprocess output',output.stdout)
else:
print(f'There is no file reader available to process files in {instrument_folder}.')
#logging.info(instFoldermsdEnd )

Binary file not shown.

View File

@ -0,0 +1,101 @@
import sys
import os
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
import pandas as pd
import collections
import json
import h5py
import argparse
import logging
import utils.g5505_utils as utils
def read_jsonflag_as_dict(path_to_file):
file_dict = {}
path_tail, path_head = os.path.split(path_to_file)
file_dict['name'] = path_head
# TODO: review this header dictionary, it may not be the best way to represent header data
file_dict['attributes_dict'] = {}
file_dict['datasets'] = []
try:
with open(path_to_file, 'r') as stream:
flag = json.load(stream)#, Loader=json.FullLoader)
except (FileNotFoundError, json.JSONDecodeError) as exc:
print(exc)
dataset = {}
dataset['name'] = 'data_table'#_numerical_variables'
dataset['data'] = utils.convert_attrdict_to_np_structured_array(flag) #df_numerical_attrs.to_numpy()
dataset['shape'] = dataset['data'].shape
dataset['dtype'] = type(dataset['data'])
file_dict['datasets'].append(dataset)
return file_dict
if __name__ == "__main__":
from src.hdf5_ops import save_file_dict_to_hdf5
from utils.g5505_utils import created_at
# Set up argument parsing
parser = argparse.ArgumentParser(description="Data ingestion process to HDF5 files.")
parser.add_argument('dst_file_path', type=str, help="Path to the target HDF5 file.")
parser.add_argument('src_file_path', type=str, help="Relative path to source file to be saved to target HDF5 file.")
parser.add_argument('dst_group_name', type=str, help="Group name '/instFolder/[category]/fileName' in the target HDF5 file.")
args = parser.parse_args()
hdf5_file_path = args.dst_file_path
src_file_path = args.src_file_path
dst_group_name = args.dst_group_name
default_mode = 'r+'
try:
# Read source file and return an internal dictionary representation
idr_dict = read_jsonflag_as_dict(src_file_path)
if not os.path.exists(hdf5_file_path):
default_mode = 'w'
print(f'Opening HDF5 file: {hdf5_file_path} in mode {default_mode}')
with h5py.File(hdf5_file_path, mode=default_mode, track_order=True) as hdf5_file_obj:
try:
# Create group if it does not exist
if dst_group_name not in hdf5_file_obj:
hdf5_file_obj.create_group(dst_group_name)
hdf5_file_obj[dst_group_name].attrs['creation_date'] = created_at().encode('utf-8')
print(f'Created new group: {dst_group_name}')
else:
print(f'Group {dst_group_name} already exists. Proceeding with data transfer...')
except Exception as inst:
logging.error('Failed to create group %s in HDF5: %s', dst_group_name, inst)
# Save dictionary to HDF5
save_file_dict_to_hdf5(hdf5_file_obj, dst_group_name, idr_dict)
print(f'Completed saving file dict with keys: {idr_dict.keys()}')
except Exception as e:
logging.error('File reader failed to process %s: %s', src_file_path, e)
print(f'File reader failed to process {src_file_path}. See logs for details.')

View File

@ -1,11 +1,25 @@
import sys import sys
import os import os
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
import pandas as pd import pandas as pd
import collections import collections
import yaml import yaml
import h5py
import argparse
import logging
#root_dir = os.path.abspath(os.curdir)
#sys.path.append(root_dir)
import utils.g5505_utils as utils import utils.g5505_utils as utils
@ -220,4 +234,55 @@ def read_acsm_files_as_dict(filename: str, instruments_dir: str = None, work_wit
except: except:
return {} return {}
return file_dict return file_dict
if __name__ == "__main__":
from src.hdf5_ops import save_file_dict_to_hdf5
from utils.g5505_utils import created_at
# Set up argument parsing
parser = argparse.ArgumentParser(description="Data ingestion process to HDF5 files.")
parser.add_argument('dst_file_path', type=str, help="Path to the target HDF5 file.")
parser.add_argument('src_file_path', type=str, help="Relative path to source file to be saved to target HDF5 file.")
parser.add_argument('dst_group_name', type=str, help="Group name '/instFolder/[category]/fileName' in the target HDF5 file.")
args = parser.parse_args()
hdf5_file_path = args.dst_file_path
src_file_path = args.src_file_path
dst_group_name = args.dst_group_name
default_mode = 'r+'
try:
# Read source file and return an internal dictionary representation
idr_dict = read_acsm_files_as_dict(src_file_path)
if not os.path.exists(hdf5_file_path):
default_mode = 'w'
print(f'Opening HDF5 file: {hdf5_file_path} in mode {default_mode}')
with h5py.File(hdf5_file_path, mode=default_mode, track_order=True) as hdf5_file_obj:
try:
# Create group if it does not exist
if dst_group_name not in hdf5_file_obj:
hdf5_file_obj.create_group(dst_group_name)
hdf5_file_obj[dst_group_name].attrs['creation_date'] = created_at().encode('utf-8')
print(f'Created new group: {dst_group_name}')
else:
print(f'Group {dst_group_name} already exists. Proceeding with data transfer...')
except Exception as inst:
logging.error('Failed to create group %s in HDF5: %s', dst_group_name, inst)
# Save dictionary to HDF5
save_file_dict_to_hdf5(hdf5_file_obj, dst_group_name, idr_dict)
print(f'Completed saving file dict with keys: {idr_dict.keys()}')
except Exception as e:
logging.error('File reader failed to process %s: %s', src_file_path, e)
print(f'File reader failed to process {src_file_path}. See logs for details.')

View File

@ -30,7 +30,7 @@ HONO: #ICAD/HONO:
file_encoding : 'latin-1' file_encoding : 'latin-1'
timestamp: ['Start Date/Time (UTC)'] timestamp: ['Start Date/Time (UTC)']
datetime_format: '%Y-%m-%d %H:%M:%S.%f' datetime_format: '%Y-%m-%d %H:%M:%S.%f'
link_to_description: 'dictionaries/ICAD_HONO.yaml' link_to_description: 'dictionaries/ICAD.yaml'
NO2: #ICAD/NO2: NO2: #ICAD/NO2:
table_header : 'Start Date/Time (UTC) Duration (s) NO2 (ppb) NO2 Uncertainty (ppb) H2O (ppb) H2O Uncertainty (ppb) CHOCHO (ppb) CHOCHO Uncertainty (ppb) File Number Light Intensity #ICEDOAS iter. Cell Pressure Ambient Pressure Cell Temp Spec Temp Lat Lon Height Speed GPSQuality 0-Air Ref. Time 0-Air Ref. Duration 0-Air Ref. File Number 0-Air Ref. Intensity 0-Air Ref. Rel Intensity 0-Air Ref. Intensity valid MeasMode SampleSource' table_header : 'Start Date/Time (UTC) Duration (s) NO2 (ppb) NO2 Uncertainty (ppb) H2O (ppb) H2O Uncertainty (ppb) CHOCHO (ppb) CHOCHO Uncertainty (ppb) File Number Light Intensity #ICEDOAS iter. Cell Pressure Ambient Pressure Cell Temp Spec Temp Lat Lon Height Speed GPSQuality 0-Air Ref. Time 0-Air Ref. Duration 0-Air Ref. File Number 0-Air Ref. Intensity 0-Air Ref. Rel Intensity 0-Air Ref. Intensity valid MeasMode SampleSource'
@ -38,7 +38,7 @@ NO2: #ICAD/NO2:
file_encoding : 'latin-1' file_encoding : 'latin-1'
timestamp: ['Start Date/Time (UTC)'] timestamp: ['Start Date/Time (UTC)']
datetime_format: '%Y-%m-%d %H:%M:%S.%f' datetime_format: '%Y-%m-%d %H:%M:%S.%f'
link_to_description: 'dictionaries/ICAD_NO2.yaml' link_to_description: 'dictionaries/ICAD.yaml'
Lopap: Lopap:
#table_header : 'Date;Time;Ch1;490.1;500.2;510.0;520.0;530.1;540.0;550.7;603.2;700.3;800.0;Ch2;500.5;510.3;520.5;530.7;540.8;550.5;550.8;560.9;570.9;581.2;586.2;591.2;596.1;601.1;606.4;611.3;' #table_header : 'Date;Time;Ch1;490.1;500.2;510.0;520.0;530.1;540.0;550.7;603.2;700.3;800.0;Ch2;500.5;510.3;520.5;530.7;540.8;550.5;550.8;560.9;570.9;581.2;586.2;591.2;596.1;601.1;606.4;611.3;'

View File

@ -1,39 +0,0 @@
import os
import json
#root_dir = os.path.abspath(os.curdir)
#sys.path.append(root_dir)
#print(__file__)
#from instruments.readers import set_dima_path as configpath
#configpath.set_dima_path()
from utils import g5505_utils
def read_jsonflag_as_dict(path_to_file):
file_dict = {}
path_tail, path_head = os.path.split(path_to_file)
file_dict['name'] = path_head
# TODO: review this header dictionary, it may not be the best way to represent header data
file_dict['attributes_dict'] = {}
file_dict['datasets'] = []
try:
with open(path_to_file, 'r') as stream:
flag = json.load(stream)#, Loader=json.FullLoader)
except (FileNotFoundError, json.JSONDecodeError) as exc:
print(exc)
dataset = {}
dataset['name'] = 'data_table'#_numerical_variables'
dataset['data'] = g5505_utils.convert_attrdict_to_np_structured_array(flag) #df_numerical_attrs.to_numpy()
dataset['shape'] = dataset['data'].shape
dataset['dtype'] = type(dataset['data'])
file_dict['datasets'].append(dataset)
return file_dict

View File

@ -1,19 +1,40 @@
import sys import sys
import os import os
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
import pandas as pd import pandas as pd
import collections import collections
import yaml import yaml
import h5py
import argparse
import logging
# Import project modules # Import project modules
root_dir = os.path.abspath(os.curdir) #root_dir = os.path.abspath(os.curdir)
sys.path.append(root_dir) #sys.path.append(root_dir)
#try:
# from dima.utils import g5505_utils as utils
#except ModuleNotFoundError:
# import utils.g5505_utils as utils
# import src.hdf5_ops as hdf5_ops
import utils.g5505_utils as utils import utils.g5505_utils as utils
def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with_copy: bool = True): def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with_copy: bool = True):
filename = os.path.normpath(filename)
# If instruments_dir is not provided, use the default path relative to the module directory # If instruments_dir is not provided, use the default path relative to the module directory
if not instruments_dir: if not instruments_dir:
# Assuming the instruments folder is one level up from the source module directory # Assuming the instruments folder is one level up from the source module directory
@ -23,6 +44,8 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
# Normalize the path (resolves any '..' in the path) # Normalize the path (resolves any '..' in the path)
instrument_configs_path = os.path.abspath(os.path.join(instruments_dir,'readers','config_text_reader.yaml')) instrument_configs_path = os.path.abspath(os.path.join(instruments_dir,'readers','config_text_reader.yaml'))
print(instrument_configs_path)
with open(instrument_configs_path,'r') as stream: with open(instrument_configs_path,'r') as stream:
try: try:
config_dict = yaml.load(stream, Loader=yaml.FullLoader) config_dict = yaml.load(stream, Loader=yaml.FullLoader)
@ -44,7 +67,9 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
description_dict = {} description_dict = {}
for instFolder in config_dict.keys(): for instFolder in config_dict.keys():
if instFolder in filename.split(os.sep): if instFolder in filename.split(os.sep):
file_encoding = config_dict[instFolder].get('file_encoding',file_encoding) file_encoding = config_dict[instFolder].get('file_encoding',file_encoding)
separator = config_dict[instFolder].get('separator',separator) separator = config_dict[instFolder].get('separator',separator)
table_header = config_dict[instFolder].get('table_header',table_header) table_header = config_dict[instFolder].get('table_header',table_header)
@ -76,6 +101,7 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
#with open(tmp_filename,'rb',encoding=file_encoding,errors='ignore') as f: #with open(tmp_filename,'rb',encoding=file_encoding,errors='ignore') as f:
if not isinstance(table_header, list): if not isinstance(table_header, list):
table_header = [table_header] table_header = [table_header]
file_encoding = [file_encoding] file_encoding = [file_encoding]
separator = [separator] separator = [separator]
@ -87,14 +113,17 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
with open(tmp_filename,'rb') as f: with open(tmp_filename,'rb') as f:
for line_number, line in enumerate(f): for line_number, line in enumerate(f):
decoded_line = line.decode(file_encoding[tb_idx])
for tb_idx, tb in enumerate(table_header):
if tb in line.decode(file_encoding[tb_idx]):
break
if tb in line.decode(file_encoding[tb_idx]): for tb_idx, tb in enumerate(table_header):
list_of_substrings = line.decode(file_encoding[tb_idx]).split(separator[tb_idx].replace('\\t','\t')) print(tb)
if tb in decoded_line:
break
if tb in decoded_line:
list_of_substrings = decoded_line.split(separator[tb_idx].replace('\\t','\t'))
# Count occurrences of each substring # Count occurrences of each substring
substring_counts = collections.Counter(list_of_substrings) substring_counts = collections.Counter(list_of_substrings)
@ -109,9 +138,11 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
#print(line_number, len(column_names ),'\n') #print(line_number, len(column_names ),'\n')
break break
else:
print('Table header was not detected.')
# Subdivide line into words, and join them by single space. # Subdivide line into words, and join them by single space.
# I asumme this can produce a cleaner line that contains no weird separator characters \t \r or extra spaces and so on. # I asumme this can produce a cleaner line that contains no weird separator characters \t \r or extra spaces and so on.
list_of_substrings = line.decode(file_encoding[tb_idx]).split() list_of_substrings = decoded_line.split()
# TODO: ideally we should use a multilinear string but the yalm parser is not recognizing \n as special character # TODO: ideally we should use a multilinear string but the yalm parser is not recognizing \n as special character
#line = ' '.join(list_of_substrings+['\n']) #line = ' '.join(list_of_substrings+['\n'])
#line = ' '.join(list_of_substrings) #line = ' '.join(list_of_substrings)
@ -119,8 +150,13 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
# TODO: it does not work with separator as none :(. fix for RGA # TODO: it does not work with separator as none :(. fix for RGA
try: try:
print(column_names)
if not 'infer' in table_header: if not 'infer' in table_header:
#print(table_header)
#print(file_encoding[tb_idx])
df = pd.read_csv(tmp_filename, df = pd.read_csv(tmp_filename,
delimiter = separator[tb_idx].replace('\\t','\t'), delimiter = separator[tb_idx].replace('\\t','\t'),
header=line_number, header=line_number,
@ -138,7 +174,7 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
df_numerical_attrs = df.select_dtypes(include ='number') df_numerical_attrs = df.select_dtypes(include ='number')
df_categorical_attrs = df.select_dtypes(exclude='number') df_categorical_attrs = df.select_dtypes(exclude='number')
numerical_variables = [item for item in df_numerical_attrs.columns] numerical_variables = [item for item in df_numerical_attrs.columns]
# Consolidate into single timestamp column the separate columns 'date' 'time' specified in text_data_source.yaml # Consolidate into single timestamp column the separate columns 'date' 'time' specified in text_data_source.yaml
if timestamp_variables: if timestamp_variables:
#df_categorical_attrs['timestamps'] = [' '.join(df_categorical_attrs.loc[i,timestamp_variables].to_numpy()) for i in df.index] #df_categorical_attrs['timestamps'] = [' '.join(df_categorical_attrs.loc[i,timestamp_variables].to_numpy()) for i in df.index]
@ -148,7 +184,7 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
#df_categorical_attrs['timestamps'] = df_categorical_attrs[timestamp_variables].astype(str).agg(' '.join, axis=1) #df_categorical_attrs['timestamps'] = df_categorical_attrs[timestamp_variables].astype(str).agg(' '.join, axis=1)
timestamps_name = ' '.join(timestamp_variables) timestamps_name = ' '.join(timestamp_variables)
df_categorical_attrs[ timestamps_name] = df_categorical_attrs[timestamp_variables].astype(str).agg(' '.join, axis=1) df_categorical_attrs[ timestamps_name] = df_categorical_attrs[timestamp_variables].astype(str).agg(' '.join, axis=1)
valid_indices = [] valid_indices = []
if datetime_format: if datetime_format:
df_categorical_attrs[ timestamps_name] = pd.to_datetime(df_categorical_attrs[ timestamps_name],format=datetime_format,errors='coerce') df_categorical_attrs[ timestamps_name] = pd.to_datetime(df_categorical_attrs[ timestamps_name],format=datetime_format,errors='coerce')
@ -249,7 +285,59 @@ def read_txt_files_as_dict(filename: str, instruments_dir: str = None, work_with
# if timestamps_name in categorical_variables: # if timestamps_name in categorical_variables:
# dataset['attributes'] = {timestamps_name: utils.parse_attribute({'unit':'YYYY-MM-DD HH:MM:SS.ffffff'})} # dataset['attributes'] = {timestamps_name: utils.parse_attribute({'unit':'YYYY-MM-DD HH:MM:SS.ffffff'})}
# file_dict['datasets'].append(dataset) # file_dict['datasets'].append(dataset)
except: except Exception as e:
print(e)
return {} return {}
return file_dict return file_dict
if __name__ == "__main__":
from src.hdf5_ops import save_file_dict_to_hdf5
from utils.g5505_utils import created_at
# Set up argument parsing
parser = argparse.ArgumentParser(description="Data ingestion process to HDF5 files.")
parser.add_argument('dst_file_path', type=str, help="Path to the target HDF5 file.")
parser.add_argument('src_file_path', type=str, help="Relative path to source file to be saved to target HDF5 file.")
parser.add_argument('dst_group_name', type=str, help="Group name '/instFolder/[category]/fileName' in the target HDF5 file.")
args = parser.parse_args()
hdf5_file_path = args.dst_file_path
src_file_path = args.src_file_path
dst_group_name = args.dst_group_name
default_mode = 'r+'
try:
# Read source file and return an internal dictionary representation
idr_dict = read_txt_files_as_dict(src_file_path)
if not os.path.exists(hdf5_file_path):
default_mode = 'w'
print(f'Opening HDF5 file: {hdf5_file_path} in mode {default_mode}')
with h5py.File(hdf5_file_path, mode=default_mode, track_order=True) as hdf5_file_obj:
try:
# Create group if it does not exist
if dst_group_name not in hdf5_file_obj:
hdf5_file_obj.create_group(dst_group_name)
hdf5_file_obj[dst_group_name].attrs['creation_date'] = created_at().encode('utf-8')
print(f'Created new group: {dst_group_name}')
else:
print(f'Group {dst_group_name} already exists. Proceeding with data transfer...')
except Exception as inst:
logging.error('Failed to create group %s in HDF5: %s', dst_group_name, inst)
# Save dictionary to HDF5
save_file_dict_to_hdf5(hdf5_file_obj, dst_group_name, idr_dict)
print(f'Completed saving file dict with keys: {idr_dict.keys()}')
except Exception as e:
logging.error('File reader failed to process %s: %s', src_file_path, e)
print(f'File reader failed to process {src_file_path}. See logs for details.')

View File

@ -1,5 +1,10 @@
import os import os
import sys
import h5py
from igor2.binarywave import load as loadibw from igor2.binarywave import load as loadibw
import logging
import argparse
def read_xps_ibw_file_as_dict(filename): def read_xps_ibw_file_as_dict(filename):
""" """
@ -76,4 +81,66 @@ def read_xps_ibw_file_as_dict(filename):
file_dict['datasets'].append(dataset) file_dict['datasets'].append(dataset)
return file_dict return file_dict
if __name__ == "__main__":
try:
thisFilePath = os.path.abspath(__file__)
except NameError:
print("Error: __file__ is not available. Ensure the script is being run from a file.")
print("[Notice] Path to DIMA package may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..','..')) # Move up to project root
if dimaPath not in sys.path: # Avoid duplicate entries
sys.path.insert(0,dimaPath)
from src.hdf5_ops import save_file_dict_to_hdf5
from utils.g5505_utils import created_at
# Set up argument parsing
parser = argparse.ArgumentParser(description="Data ingestion process to HDF5 files.")
parser.add_argument('dst_file_path', type=str, help="Path to the target HDF5 file.")
parser.add_argument('src_file_path', type=str, help="Relative path to source file to be saved to target HDF5 file.")
parser.add_argument('dst_group_name', type=str, help="Group name '/instFolder/[category]/fileName' in the target HDF5 file.")
args = parser.parse_args()
hdf5_file_path = args.dst_file_path
src_file_path = args.src_file_path
dst_group_name = args.dst_group_name
default_mode = 'r+'
try:
# Read source file and return an internal dictionary representation
idr_dict = read_xps_ibw_file_as_dict(src_file_path)
if not os.path.exists(hdf5_file_path):
default_mode = 'w'
print(f'Opening HDF5 file: {hdf5_file_path} in mode {default_mode}')
with h5py.File(hdf5_file_path, mode=default_mode, track_order=True) as hdf5_file_obj:
try:
# Create group if it does not exist
if dst_group_name not in hdf5_file_obj:
hdf5_file_obj.create_group(dst_group_name)
hdf5_file_obj[dst_group_name].attrs['creation_date'] = created_at().encode('utf-8')
print(f'Created new group: {dst_group_name}')
else:
print(f'Group {dst_group_name} already exists. Proceeding with data transfer...')
except Exception as inst:
logging.error('Failed to create group %s in HDF5: %s', dst_group_name, inst)
# Save dictionary to HDF5
save_file_dict_to_hdf5(hdf5_file_obj, dst_group_name, idr_dict)
print(f'Completed saving file dict with keys: {idr_dict.keys()}')
except Exception as e:
logging.error('File reader failed to process %s: %s', src_file_path, e)
print(f'File reader failed to process {src_file_path}. See logs for details.')

75
instruments/registry.yaml Normal file
View File

@ -0,0 +1,75 @@
instruments:
- instrumentFolderName: default
fileExtension: csv
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: null
- instrumentFolderName: NEXAFS
fileExtension: h5
fileReaderPath: null
InstrumentDictionaryPath: null
- instrumentFolderName: SES
fileExtension: ibw
fileReaderPath: instruments/readers/xps_ibw_reader.py
InstrumentDictionaryPath: null
- instrumentFolderName: RGA
fileExtension: txt
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/RGA.yaml
- instrumentFolderName: Pressure
fileExtension: dat
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/Pressure.yaml
- instrumentFolderName: Humidity_Sensors
fileExtension: dat
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/Humidity_Sensors.yaml
- instrumentFolderName: ICAD
fileExtension: dat
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/ICAD.yaml
- instrumentFolderName: Lopap
fileExtension: dat
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/Lopap.yaml
- instrumentFolderName: T200_NOx
fileExtension: dat
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/T200_NOx.yaml
- instrumentFolderName: T360U_CO2
fileExtension: dat
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/T360U_CO2.yaml
- instrumentFolderName: htof
fileExtension: h5
fileReaderPath: null
InstrumentDictionaryPath: null
- instrumentFolderName: smps
fileExtension: txt
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/smps.yaml
- instrumentFolderName: gas
fileExtension: txt
fileReaderPath: instruments/readers/g5505_text_reader.py
InstrumentDictionaryPath: instruments/dictionaries/gas.yaml
- instrumentFolderName: ACSM_TOFWARE
fileExtension: txt
fileReaderPath: instruments/readers/acsm_tofware_reader.py
InstrumentDictionaryPath: instruments/dictionaries/ACSM_TOFWARE.yaml
- instrumentFolderName: ACSM_TOFWARE
fileExtension: csv
fileReaderPath: instruments/readers/acsm_tofware_reader.py
InstrumentDictionaryPath: instruments/dictionaries/ACSM_TOFWARE.yaml

View File

@ -22,9 +22,15 @@ from datetime import datetime
from itertools import chain from itertools import chain
# Import DIMA modules # Import DIMA modules
import src.hdf5_writer as hdf5_lib try:
import utils.g5505_utils as utils from dima.src import hdf5_writer as hdf5_lib
from instruments import filereader_registry from dima.utils import g5505_utils as utils
from dima.instruments.readers import filereader_registry
except ModuleNotFoundError:
print(':)')
import src.hdf5_writer as hdf5_lib
import utils.g5505_utils as utils
from instruments import filereader_registry
allowed_file_extensions = filereader_registry.file_extensions allowed_file_extensions = filereader_registry.file_extensions

View File

@ -15,7 +15,12 @@ if dimaPath not in sys.path: # Avoid duplicate entries
import h5py import h5py
import yaml import yaml
import src.hdf5_ops as hdf5_ops
try:
from dima.src import hdf5_ops as hdf5_ops
except ModuleNotFoundError:
import src.hdf5_ops as hdf5_ops
def load_yaml(review_yaml_file): def load_yaml(review_yaml_file):

View File

@ -1,7 +1,12 @@
import subprocess import subprocess
import os import os
import utils.g5505_utils as utils
from pipelines.metadata_revision import update_hdf5_file_with_review try:
from dima.utils import g5505_utils as utils
from dima.pipelines.metadata_revision import update_hdf5_file_with_review
except ModuleNotFoundError:
import utils.g5505_utils as utils
from pipelines.metadata_revision import update_hdf5_file_with_review
def perform_git_operations(hdf5_upload): def perform_git_operations(hdf5_upload):
status_command = ['git', 'status'] status_command = ['git', 'status']

View File

@ -17,9 +17,6 @@ if dimaPath not in sys.path: # Avoid duplicate entries
import h5py import h5py
import pandas as pd import pandas as pd
import numpy as np import numpy as np
import utils.g5505_utils as utils
import src.hdf5_writer as hdf5_lib
import logging import logging
import datetime import datetime
@ -29,6 +26,13 @@ import yaml
import json import json
import copy import copy
#try:
# from dima.utils import g5505_utils as utils
# from dima.src import hdf5_writer as hdf5_lib
#except ModuleNotFoundError:
import utils.g5505_utils as utils
import src.hdf5_writer as hdf5_lib
class HDF5DataOpsManager(): class HDF5DataOpsManager():
""" """
@ -702,3 +706,67 @@ if __name__ == "__main__":
#run(sys.argv[2]) #run(sys.argv[2])
def save_file_dict_to_hdf5(h5file, group_name, file_dict):
"""
Transfers data from a file_dict to an HDF5 file.
Parameters
----------
h5file : h5py.File
HDF5 file object where the data will be written.
group_name : str
Name of the HDF5 group where data will be stored.
file_dict : dict
Dictionary containing file data to be transferred. Required structure:
{
'name': str,
'attributes_dict': dict,
'datasets': [
{
'name': str,
'data': array-like,
'shape': tuple,
'attributes': dict (optional)
},
...
]
}
Returns
-------
None
"""
if not file_dict:
return
try:
# Create group and add their attributes
filename = file_dict['name']
group = h5file[group_name].create_group(name=filename)
# Add group attributes
group.attrs.update(file_dict['attributes_dict'])
# Add datasets to the just created group
for dataset in file_dict['datasets']:
dataset_obj = group.create_dataset(
name=dataset['name'],
data=dataset['data'],
shape=dataset['shape']
)
# Add dataset's attributes
attributes = dataset.get('attributes', {})
dataset_obj.attrs.update(attributes)
group.attrs['last_update_date'] = utils.created_at().encode('utf-8')
stdout = f'Completed transfer for /{group_name}/{filename}'
print(stdout)
except Exception as inst:
logging.error('Failed to transfer data into HDF5: %s', inst)
return -1
return 0

View File

@ -1,7 +1,7 @@
import sys import sys
import os import os
root_dir = os.path.abspath(os.curdir) #root_dir = os.path.abspath(os.curdir)
sys.path.append(root_dir) #sys.path.append(root_dir)
import pandas as pd import pandas as pd
import numpy as np import numpy as np
@ -9,89 +9,38 @@ import h5py
import logging import logging
import json import json
#try:
# from dima.utils import g5505_utils as utils
# from dima.src import hdf5_ops
# from dima.instruments import filereader_registry as filereader_registry
#except ModuleNotFoundError:
import utils.g5505_utils as utils import utils.g5505_utils as utils
import src.hdf5_ops as hdf5_ops
import instruments.filereader_registry as filereader_registry import instruments.filereader_registry as filereader_registry
def __transfer_file_dict_to_hdf5(h5file, group_name, file_dict):
"""
Transfers data from a file_dict to an HDF5 file.
Parameters
----------
h5file : h5py.File
HDF5 file object where the data will be written.
group_name : str
Name of the HDF5 group where data will be stored.
file_dict : dict
Dictionary containing file data to be transferred. Required structure:
{
'name': str,
'attributes_dict': dict,
'datasets': [
{
'name': str,
'data': array-like,
'shape': tuple,
'attributes': dict (optional)
},
...
]
}
Returns def __copy_file_in_group(path_to_output_file, source_file_path, dest_group_name, work_with_copy : bool = True):
-------
None
"""
if not file_dict:
return
try:
# Create group and add their attributes
filename = file_dict['name']
group = h5file[group_name].create_group(name=filename)
# Add group attributes
group.attrs.update(file_dict['attributes_dict'])
# Add datasets to the just created group
for dataset in file_dict['datasets']:
dataset_obj = group.create_dataset(
name=dataset['name'],
data=dataset['data'],
shape=dataset['shape']
)
# Add dataset's attributes
attributes = dataset.get('attributes', {})
dataset_obj.attrs.update(attributes)
group.attrs['last_update_date'] = utils.created_at().encode('utf-8')
stdout = f'Completed transfer for /{group_name}/{filename}'
except Exception as inst:
stdout = inst
logging.error('Failed to transfer data into HDF5: %s', inst)
return stdout
def __copy_file_in_group(source_file_path, dest_file_obj : h5py.File, dest_group_name, work_with_copy : bool = True):
# Create copy of original file to avoid possible file corruption and work with it. # Create copy of original file to avoid possible file corruption and work with it.
with h5py.File(path_to_output_file, mode='r+', track_order=True) as dest_file_obj:
if work_with_copy: if work_with_copy:
tmp_file_path = utils.make_file_copy(source_file_path) tmp_file_path = utils.make_file_copy(source_file_path)
else: else:
tmp_file_path = source_file_path tmp_file_path = source_file_path
# Open backup h5 file and copy complet filesystem directory onto a group in h5file # Open backup h5 file and copy complet filesystem directory onto a group in h5file
with h5py.File(tmp_file_path,'r') as src_file: with h5py.File(tmp_file_path,'r') as src_file:
dest_file_obj.copy(source= src_file['/'], dest= dest_group_name) dest_file_obj.copy(source= src_file['/'], dest= dest_group_name)
if 'tmp_files' in tmp_file_path: if 'tmp_files' in tmp_file_path:
os.remove(tmp_file_path) os.remove(tmp_file_path)
stdout = f'Completed transfer for /{dest_group_name}' stdout = f'Completed transfer for /{dest_group_name}'
return stdout return stdout
def create_hdf5_file_from_filesystem_path(path_to_input_directory: str, def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
@ -228,20 +177,16 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
# hdf5 path to filename group # hdf5 path to filename group
dest_group_name = f'{group_name}/{filename}' dest_group_name = f'{group_name}/{filename}'
source_file_path = os.path.join(dirpath,filename)
if not 'h5' in filename: if not 'h5' in filename:
#file_dict = config_file.select_file_readers(group_id)[file_ext](os.path.join(dirpath,filename)) #file_dict = config_file.select_file_readers(group_id)[file_ext](os.path.join(dirpath,filename))
#file_dict = ext_to_reader_dict[file_ext](os.path.join(dirpath,filename)) #file_dict = ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
file_dict = filereader_registry.select_file_reader(dest_group_name)(os.path.join(dirpath,filename)) file_dict = filereader_registry.select_file_reader(dest_group_name)(source_file_path)
# Check whether there is an available file reader
if file_dict is not None and isinstance(file_dict, dict):
if 'attributes_dict' in file_dict:
file_dict['attributes_dict'].update(data_lineage_dict.get(filename,{}))
stdout = __transfer_file_dict_to_hdf5(h5file, group_name, file_dict) stdout = hdf5_ops.save_file_dict_to_hdf5(h5file, group_name, file_dict)
else: else:
source_file_path = os.path.join(dirpath,filename)
dest_file_obj = h5file dest_file_obj = h5file
#group_name +'/'+filename #group_name +'/'+filename
#ext_to_reader_dict[file_ext](source_file_path, dest_file_obj, dest_group_name) #ext_to_reader_dict[file_ext](source_file_path, dest_file_obj, dest_group_name)
@ -270,6 +215,186 @@ def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
return path_to_output_file #, output_yml_filename_path return path_to_output_file #, output_yml_filename_path
def create_hdf5_file_from_filesystem_path_new(path_to_input_directory: str,
path_to_filenames_dict: dict = None,
select_dir_keywords : list = [],
root_metadata_dict : dict = {}, mode = 'w'):
"""
Creates an .h5 file with name "output_filename" that preserves the directory tree (or folder structure)
of a given filesystem path.
The data integration capabilities are limited by our file reader, which can only access data from a list of
admissible file formats. These, however, can be extended. Directories are groups in the resulting HDF5 file.
Files are formatted as composite objects consisting of a group, file, and attributes.
Parameters
----------
output_filename : str
Name of the output HDF5 file.
path_to_input_directory : str
Path to root directory, specified with forward slashes, e.g., path/to/root.
path_to_filenames_dict : dict, optional
A pre-processed dictionary where keys are directory paths on the input directory's tree and values are lists of files.
If provided, 'input_file_system_path' is ignored.
select_dir_keywords : list
List of string elements to consider or select only directory paths that contain
a word in 'select_dir_keywords'. When empty, all directory paths are considered
to be included in the HDF5 file group hierarchy.
root_metadata_dict : dict
Metadata to include at the root level of the HDF5 file.
mode : str
'w' create File, truncate if it exists, or 'r+' read/write, File must exists. By default, mode = "w".
Returns
-------
output_filename : str
Path to the created HDF5 file.
"""
if not mode in ['w','r+']:
raise ValueError(f'Parameter mode must take values in ["w","r+"]')
if not '/' in path_to_input_directory:
raise ValueError('path_to_input_directory needs to be specified using forward slashes "/".' )
#path_to_output_directory = os.path.join(path_to_input_directory,'..')
path_to_input_directory = os.path.normpath(path_to_input_directory).rstrip(os.sep)
for i, keyword in enumerate(select_dir_keywords):
select_dir_keywords[i] = keyword.replace('/',os.sep)
if not path_to_filenames_dict:
# On dry_run=True, returns path to files dictionary of the output directory without making a actual copy of the input directory.
# Therefore, there wont be a copying conflict by setting up input and output directories the same
path_to_filenames_dict = utils.copy_directory_with_contraints(input_dir_path=path_to_input_directory,
output_dir_path=path_to_input_directory,
dry_run=True)
# Set input_directory as copied input directory
root_dir = path_to_input_directory
path_to_output_file = path_to_input_directory.rstrip(os.path.sep) + '.h5'
start_message = f'\n[Start] Data integration :\nSource: {path_to_input_directory}\nDestination: {path_to_output_file}\n'
print(start_message)
logging.info(start_message)
# Check if the .h5 file already exists
if os.path.exists(path_to_output_file) and mode in ['w']:
message = (
f"[Notice] The file '{path_to_output_file}' already exists and will not be overwritten.\n"
"If you wish to replace it, please delete the existing file first and rerun the program."
)
print(message)
logging.error(message)
else:
with h5py.File(path_to_output_file, mode=mode, track_order=True) as h5file:
print('Created file')
number_of_dirs = len(path_to_filenames_dict.keys())
dir_number = 1
for dirpath, filtered_filenames_list in path_to_filenames_dict.items():
# Check if filtered_filenames_list is nonempty. TODO: This is perhaps redundant by design of path_to_filenames_dict.
if not filtered_filenames_list:
continue
group_name = dirpath.replace(os.sep,'/')
group_name = group_name.replace(root_dir.replace(os.sep,'/') + '/', '/')
# Flatten group name to two level
if select_dir_keywords:
offset = sum([len(i.split(os.sep)) if i in dirpath else 0 for i in select_dir_keywords])
else:
offset = 2
tmp_list = group_name.split('/')
if len(tmp_list) > offset+1:
group_name = '/'.join([tmp_list[i] for i in range(offset+1)])
# try:
# # Create group called "group_name". Hierarchy of nested groups can be implicitly defined by the forward slashes
# if not group_name in h5file.keys():
# h5file.create_group(group_name)
# h5file[group_name].attrs['creation_date'] = utils.created_at().encode('utf-8')
# #h5file[group_name].attrs.create(name='filtered_file_list',data=convert_string_to_bytes(filtered_filename_list))
# #h5file[group_name].attrs.create(name='file_list',data=convert_string_to_bytes(filenames_list))
# #else:
# #print(group_name,' was already created.')
# instFoldermsgStart = f'Starting data transfer from instFolder: {group_name}'
# print(instFoldermsgStart)
# except Exception as inst:
# stdout = inst
# logging.error('Failed to create group %s into HDF5: %s', group_name, inst)
for filenumber, filename in enumerate(filtered_filenames_list):
#file_ext = os.path.splitext(filename)[1]
#try:
# hdf5 path to filename group
dest_group_name = f'{group_name}/{filename}'
source_file_path = os.path.join(dirpath,filename)
if not 'h5' in filename:
#file_dict = config_file.select_file_readers(group_id)[file_ext](os.path.join(dirpath,filename))
#file_dict = ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
# TODO: Run save_file_dict_to_hdf5 from reader.py using command line interface
#file_dict = filereader_registry.select_file_reader(dest_group_name)(os.path.join(dirpath,filename))
#stdout = hdf5_ops.save_file_dict_to_hdf5(h5file, group_name, file_dict)
filereader_registry.run_reader(path_to_output_file, source_file_path, dest_group_name)
else:
#try:
# # Create group if it does not exist
# if dest_group_name not in dest_file_obj:
# dest_file_obj.create_group(dest_group_name)
# dest_file_obj[dest_group_name].attrs['creation_date'] = utils.created_at().encode('utf-8')
# print(f'Created new group: {dest_group_name}')
# else:
# print(f'Group {dest_group_name} already exists. Proceeding with data transfer...')
#except Exception as inst:
# logging.error('Failed to create group %s in HDF5: %s', dest_group_name, inst)
#group_name +'/'+filename
#ext_to_reader_dict[file_ext](source_file_path, dest_file_obj, dest_group_name)
#g5505f_reader.select_file_reader(dest_group_name)(source_file_path, dest_file_obj, dest_group_name)
stdout = __copy_file_in_group(path_to_output_file, source_file_path, dest_group_name, False)
# Update the progress bar and log the end message
instFoldermsdEnd = f'\nCompleted data transfer for instFolder: {group_name}\n'
# Print and log the start message
utils.progressBar(dir_number, number_of_dirs, instFoldermsdEnd)
logging.info(instFoldermsdEnd )
dir_number = dir_number + 1
print('[End] Data integration')
logging.info('[End] Data integration')
if len(root_metadata_dict.keys())>0:
with h5py.File(path_to_output_file, mode='r+', track_order=True) as h5file:
for key, value in root_metadata_dict.items():
#if key in h5file.attrs:
# del h5file.attrs[key]
h5file.attrs.create(key, value)
#annotate_root_dir(output_filename,root_metadata_dict)
#output_yml_filename_path = hdf5_vis.take_yml_snapshot_of_hdf5_file(output_filename)
return path_to_output_file #, output_yml_filename_path
def create_hdf5_file_from_dataframe(ofilename, input_data, group_by_funcs: list, approach: str = None, extract_attrs_func=None): def create_hdf5_file_from_dataframe(ofilename, input_data, group_by_funcs: list, approach: str = None, extract_attrs_func=None):
""" """
Creates an HDF5 file with hierarchical groups based on the specified grouping functions or columns. Creates an HDF5 file with hierarchical groups based on the specified grouping functions or columns.
@ -412,6 +537,6 @@ def save_processed_dataframe_to_hdf5(df, annotator, output_filename): # src_hdf5
with h5py.File(output_filename, mode) as h5file: with h5py.File(output_filename, mode) as h5file:
# Add project level attributes at the root/top level # Add project level attributes at the root/top level
h5file.attrs.update(project_level_attributes) h5file.attrs.update(project_level_attributes)
__transfer_file_dict_to_hdf5(h5file, '/', file_dict) hdf5_ops.save_file_dict_to_hdf5(h5file, '/', file_dict)
#if __name__ == '__main__': #if __name__ == '__main__':

View File

@ -13,8 +13,11 @@ from plotly.subplots import make_subplots
import plotly.graph_objects as go import plotly.graph_objects as go
import plotly.express as px import plotly.express as px
#import plotly.io as pio #import plotly.io as pio
from src.hdf5_ops import get_parent_child_relationships
try:
from dima.src.hdf5_ops import get_parent_child_relationships
except ModuleNotFoundError:
from src.hdf5_ops import get_parent_child_relationships
def display_group_hierarchy_on_a_treemap(filename: str): def display_group_hierarchy_on_a_treemap(filename: str):