diff --git a/g5505_file_reader.py b/g5505_file_reader.py index ca99b80..1b78ae1 100644 --- a/g5505_file_reader.py +++ b/g5505_file_reader.py @@ -8,6 +8,8 @@ from igor2.binarywave import load as loadibw #import h5py import os +import tempfile +import shutil def read_xps_ibw_file_as_dict(filename): @@ -39,14 +41,14 @@ def read_xps_ibw_file_as_dict(filename): if not key in exclude_list: file_dict['attributes_dict'][key] = value - # TODO: talk to thorsten to see if there is an easier way to access the below attributes + # TODO: talk to Thorsten to see if there is an easier way to access the below attributes dimension_labels = file_obj['wave']['dimension_units'].decode("utf-8").split(']') file_dict['attributes_dict']['dimension_units'] = [item+']' for item in dimension_labels[0:len(dimension_labels)-1]] return file_dict - + def main(): diff --git a/src/hdf5_lib.py b/src/hdf5_lib.py index 563355a..2592a81 100644 --- a/src/hdf5_lib.py +++ b/src/hdf5_lib.py @@ -12,7 +12,7 @@ from plotly.subplots import make_subplots import g5505_file_reader import g5505_utils as utils -import src.smog_chamber_file_reader as smog_chamber_file_reader +import smog_chamber_file_reader def read_mtable_as_dataframe(filename): @@ -472,8 +472,9 @@ def main_5505(): file_dict = g5505_file_reader.read_xps_ibw_file_as_dict(inputfile_dir+'\\SES\\0069069_N1s_495eV.ibw') group_by_type = lambda x : utils.group_by_df_column(x,'filetype') + select_file_keywords=[] select_dir_keywords = ['NEXAFS', 'Notes', 'Photos', 'Pressure', 'RGA', 'SES'] - create_hdf5_file_from_filesystem_path('test_sls_data.h5',inputfile_dir,select_dir_keywords,select_file_keywords=[]) + create_hdf5_file_from_filesystem_path('test_sls_data.h5',inputfile_dir,select_dir_keywords,select_file_keywords) display_group_hierarchy_on_a_treemap('test_smog_chamber_v5.h5') #create_hdf5_file('test', inputfile_dir, 'Topdown', [group_by_type], extract_attrs_func = None) @@ -489,8 +490,11 @@ def main_smog_chamber(): display_group_hierarchy_on_a_treemap('test_smog_chamber_v5.h5') def main_mtable_h5_from_dataframe(): + + #import os + ROOT_DIR = os.path.abspath(os.curdir) # Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table - input_data_df = read_mtable_as_dataframe('input_files\\BeamTimeMetaData.h5') + input_data_df = read_mtable_as_dataframe(os.path.join(ROOT_DIR,'input_files\\BeamTimeMetaData.h5')) # Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file # under certain grouping specificiations.