Implemented 1) function to add metadata to root folder in existing hdf5 file, 2) piece of code to display root folder's metadata on treemap's hoover.
This commit is contained in:
114
hdf5_lib.py
114
hdf5_lib.py
@@ -10,7 +10,7 @@ import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
def read_hdf5_as_dataframe(filename):
|
||||
def read_mtable_as_dataframe(filename):
|
||||
|
||||
""" Reconstruct a Matlab Table encoded in a .h5 file as a Pandas DataFrame. The input h5. file
|
||||
contains as many groups as rows in the Matlab Table, and each group stores dataset-like variables in the Table as
|
||||
@@ -69,11 +69,12 @@ def read_hdf5_as_dataframe(filename):
|
||||
|
||||
return output_dataframe
|
||||
|
||||
|
||||
def is_callable_list(x : list):
|
||||
return all([callable(item) for item in x])
|
||||
|
||||
def is_str_list(x : list):
|
||||
return all([isinstance(item,str) for item in x])
|
||||
|
||||
def is_nested_hierarchy(df) -> bool:
|
||||
"""receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
|
||||
That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
|
||||
@@ -103,8 +104,6 @@ def is_nested_hierarchy(df) -> bool:
|
||||
|
||||
return all([are_nested(df_tmp,'level_'+str(i)+'_groups','level_'+str(i+1)+'_groups') for i in range(len(df_tmp.columns)-1)])
|
||||
|
||||
|
||||
|
||||
def get_attr_names(input_data):
|
||||
|
||||
# TODO: extend this to file-system paths
|
||||
@@ -119,7 +118,6 @@ def create_group_hierarchy(obj, df, columns):
|
||||
Input:
|
||||
obj (h5py.File or h5py.Group)
|
||||
columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
|
||||
|
||||
"""
|
||||
|
||||
if not columns:
|
||||
@@ -128,6 +126,9 @@ def create_group_hierarchy(obj, df, columns):
|
||||
# Determine categories associated with first categorical column
|
||||
unique_values = df[columns[0]].unique()
|
||||
|
||||
if obj.name == '/':
|
||||
obj.attrs.create('count',df.shape[0])
|
||||
|
||||
for group_name in unique_values:
|
||||
|
||||
group = obj.require_group(group_name)
|
||||
@@ -142,9 +143,9 @@ def create_group_hierarchy(obj, df, columns):
|
||||
|
||||
def get_parent_child_relationships(file: h5py.File):
|
||||
|
||||
nodes = []
|
||||
parent = []
|
||||
values = []
|
||||
nodes = ['/']
|
||||
parent = ['']
|
||||
values = [file.attrs['count']]
|
||||
|
||||
def node_visitor(name,obj):
|
||||
if isinstance(obj,h5py.Group):
|
||||
@@ -184,12 +185,21 @@ def format_group_names(names: list):
|
||||
|
||||
|
||||
|
||||
def display_group_hierarchy_on_treemap(filename: str):
|
||||
def display_group_hierarchy_on_a_treemap(filename: str):
|
||||
|
||||
with h5py.File(filename,'r') as file:
|
||||
nodes, parents, values = get_parent_child_relationships(file)
|
||||
|
||||
#formating_df = format_group_names(nodes + ["/"])
|
||||
metadata_list = []
|
||||
metadata_dict={}
|
||||
for key in file.attrs.keys():
|
||||
if 'metadata' in key:
|
||||
metadata_dict[key[key.find('_')+1::]]= file.attrs[key]
|
||||
metadata_list.append(key[key.find('_')+1::]+':'+file.attrs[key])
|
||||
metadata = '<br>'.join(['<br>'] + metadata_list)
|
||||
|
||||
customdata_series = pd.Series(nodes)
|
||||
customdata_series[0] = metadata
|
||||
|
||||
fig = make_subplots(1, 1, specs=[[{"type": "domain"}]],)
|
||||
fig.add_trace(go.Treemap(
|
||||
@@ -197,18 +207,26 @@ def display_group_hierarchy_on_treemap(filename: str):
|
||||
parents=parents,#formating_df['formated_names'][parents],
|
||||
values=values,
|
||||
branchvalues='total',
|
||||
customdata= pd.Series(nodes),
|
||||
customdata= customdata_series,
|
||||
#marker=dict(
|
||||
# colors=df_all_trees['color'],
|
||||
# colorscale='RdBu',
|
||||
# cmid=average_score),
|
||||
#hovertemplate='<b>%{label} </b> <br> Number of files: %{value}<br> Success rate: %{color:.2f}',
|
||||
hovertemplate='<b>%{label} </b> <br> Count: %{value} <br> Path: %{customdata}',
|
||||
name=''
|
||||
name='',
|
||||
root_color="lightgrey"
|
||||
))
|
||||
fig.update_layout(width = 800, height= 600, margin = dict(t=50, l=25, r=25, b=25))
|
||||
fig.show()
|
||||
|
||||
def annotate_root_dir(filename,annotation_dict: dict):
|
||||
with h5py.File(filename,'r+') as file:
|
||||
for key in annotation_dict:
|
||||
file.attrs.create('metadata_'+key, annotation_dict[key])
|
||||
|
||||
|
||||
|
||||
def create_hdf5_file(ofilename, input_data, approach : str, group_by_funcs : list, extract_attrs_func = None):
|
||||
|
||||
""" Creates an hdf5 file with as many levels as indicated by len(group_by_funcs).
|
||||
@@ -279,9 +297,9 @@ def create_hdf5_file(ofilename, input_data, approach : str, group_by_funcs : lis
|
||||
# f.create_group(join_path(group_name,subgroup_name))
|
||||
|
||||
# Get groups at the bottom of the hierarchy
|
||||
bottom_level_groups = get_groups_at_a_level(file, file.attrs['depth'])
|
||||
#bottom_level_groups = get_groups_at_a_level(file, file.attrs['depth'])
|
||||
|
||||
nodes, parents, values = get_parent_child_relationships(file)
|
||||
#nodes, parents, values = get_parent_child_relationships(file)
|
||||
print(':)')
|
||||
#fig = px.treemap(values=values,names=nodes, parents= parents)
|
||||
#fig.update_traces(root_color="lightgrey")
|
||||
@@ -299,7 +317,7 @@ def create_hdf5_file(ofilename, input_data, approach : str, group_by_funcs : lis
|
||||
#
|
||||
# Add datasets to groups and the groups and the group's attributes
|
||||
|
||||
return 0
|
||||
#return 0
|
||||
|
||||
|
||||
def augment_with_filetype(df):
|
||||
@@ -323,27 +341,13 @@ def group_by_df_column(df, column_name: str):
|
||||
|
||||
return df[column_name]
|
||||
|
||||
def main():
|
||||
|
||||
# input data frame
|
||||
input_data = read_hdf5_as_dataframe('input_files\\BeamTimeMetaData.h5')
|
||||
|
||||
# Rename column 'name' with 'filename'. get_filetype finds filetypes based on extension of filenames assumed to be located at the column 'filename'.
|
||||
input_data = input_data.rename(columns = {'name':'filename'})
|
||||
# Add column with filetypes to input_data
|
||||
input_data = augment_with_filenumber(input_data)
|
||||
input_data = augment_with_filetype(input_data)
|
||||
#input_data['filetype'] = get_filetype(input_data)
|
||||
print(input_data['filetype'].unique())
|
||||
# Reduce input_data to files of ibw type
|
||||
input_data = input_data.loc[input_data['filetype']=='ibw', : ]
|
||||
#input_data = input_data.loc[input_data['sample']!='' , : ]
|
||||
def split_sample_col_into_sample_and_data_quality_cols(input_data: pd.DataFrame):
|
||||
|
||||
sample_name = []
|
||||
sample_quality = []
|
||||
for item in input_data['sample']:
|
||||
if item.find('(')!=-1:
|
||||
print(item)
|
||||
#print(item)
|
||||
sample_name.append(item[0:item.find('(')])
|
||||
sample_quality.append(item[item.find('(')+1:len(item)-1])
|
||||
else:
|
||||
@@ -356,32 +360,48 @@ def main():
|
||||
input_data['sample'] = sample_name
|
||||
input_data['data_quality'] = sample_quality
|
||||
|
||||
return input_data
|
||||
|
||||
def main():
|
||||
|
||||
# Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table
|
||||
input_data_df = read_mtable_as_dataframe('input_files\\BeamTimeMetaData.h5')
|
||||
|
||||
# Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file
|
||||
# under certain grouping specificiations.
|
||||
input_data_df = input_data_df.rename(columns = {'name':'filename'})
|
||||
input_data_df = augment_with_filenumber(input_data_df)
|
||||
input_data_df = augment_with_filetype(input_data_df)
|
||||
input_data_df = split_sample_col_into_sample_and_data_quality_cols(input_data_df)
|
||||
input_data_df['lastModifiedDatestr'] = input_data_df['lastModifiedDatestr'].astype('datetime64[s]')
|
||||
|
||||
# Define grouping functions to be passed into create_hdf5_file function. These can also be set
|
||||
# as strings refering to categorical columns in input_data_df.
|
||||
|
||||
test_grouping_funcs = True
|
||||
if test_grouping_funcs:
|
||||
group_by_sample = lambda x : group_by_df_column(x,'sample')
|
||||
group_by_type = lambda x : group_by_df_column(x,'filetype')
|
||||
group_by_filenumber = lambda x : group_by_df_column(x,'filenumber')
|
||||
else:
|
||||
group_by_sample = 'sample'
|
||||
group_by_type = 'filetype'
|
||||
group_by_filenumber = 'filenumber'
|
||||
|
||||
#fig = px.treemap(values=[10,4,3,3,2],names=[1,2,3,4,5], parents=[None,1,1,1,2],hover_name=['si senhor',':)',':)',':)','bottom'])
|
||||
create_hdf5_file('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
|
||||
|
||||
#fig = px.treemap(input_data,path=[px.Constant("BeamtimeMetadata.h5"),'sample','filenumber'])
|
||||
#fig.update_traces(root_color = "lightgrey")
|
||||
#fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
||||
#fig.show()
|
||||
success = create_hdf5_file('test.h5',input_data, 'top-down', group_by_funcs = [group_by_sample, group_by_filenumber])
|
||||
annotation_dict = {'Campaign name': 'SLS-Campaign-2023',
|
||||
'Users':'Thorsten, Luca, Zoe',
|
||||
'Startdate': str(input_data_df['lastModifiedDatestr'].min()),
|
||||
'Enddate': str(input_data_df['lastModifiedDatestr'].max())
|
||||
}
|
||||
annotate_root_dir('test.h5',annotation_dict)
|
||||
|
||||
display_group_hierarchy_on_treemap('test.h5')
|
||||
display_group_hierarchy_on_a_treemap('test.h5')
|
||||
|
||||
print(':)')
|
||||
|
||||
|
||||
#success = create_hdf5_file('test_v2.h5',input_data, 'top-down', group_by_funcs = ['sample','filenumber','filetype'])
|
||||
|
||||
#df['file_group']
|
||||
|
||||
#print(df.head())
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user